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ABSTRACT

A drawback of non parametric estimators of the size of a
closed population in the presence of heterogeneous capture
probabilities has been their lack of analytic tractability.
Here we show that the martingale estimating function/
sample coverage approach to estimating the size of a closed
population with heterogeneous capture probabilities is math-
ematically tractable and develop its large sample properties.
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1. INTRODUCTION

Mark-recapture sampling is commonly used to estimate the size of
a closed population. In a typical capture–recapture experiment in the bio-
logical and ecological sciences, animals are captured, uniquely marked
and released into the population at each of several trapping occasion. At
the end of the experiment, the complete capture history for each captured
animal is known. Comprehensive reviews of this topic are provided in (1–4).
The traditional models assume that on a given capture occasion all animals
have the same capture probabilities. However, it has been long recognized
by biologists and ecologists that the equal-catchability assumption is an
unattainable ideal in natural populations (5, p. 146). Many previous studies
(e.g., 6,7) have confirmed that heterogeneity among capture probabilities
cause negative bias for traditional estimators based on equal-catchability.

Burnham, in an unpublished Ph.D. thesis (Oregon State University,
1972) was the first to consider heterogeneous models. This model, which
is usually referred as model Mh in the literature, (6,8) assumes that each
animal has its own capture probability, which remains constant over the
capture occasions and is not altered by previous capture. Specifically, it
is assumed that there are N animals whose capture probabilities are
f p1, p2, . . . , pNg. One way to reduce the number of parameters is to
assume that f p1, p2, . . . , pNg is a random sample from some distribution.
For example, Burnham in his Ph.D. thesis considered a two-parameter
beta distribution, but he found that the maximum likelihood estimators
were not satisfactory. The non-parametric approach makes no assumption
about the form of the distribution. A jackknife estimator in a non-
parametric framework has been proposed (7,9) and its practical use recom-
mended (6,10). Other non-parametric approaches include the bootstrap
estimator (11), sample coverage estimator (12,13), a loglinear model
approach (14,15), and the non-parametric MLE (16).

The justification of many these estimators is through simulation
studies as the estimators have tended to be analytically intractable. The
simulations typically show that non-parametric estimators sometimes
perform well and at other times perform poorly. However, (17) used optimal
martingale estimating equations and sample coverage to propose a unified
approach to the estimation of the size of a closed population which we
show to be analytically tractable in the case of model Mh. For a review of
the estimating function approach, see (18). The estimating function
approach has also been applied to other capture–recapture models, for
example, to beta-binomial (19), to the removal model (20) and to model
Mtb, that allows capture probabilities to vary with time and in response
to previous capture but not between individuals (21). The idea of sample
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coverage, originally due to I. J. Good and A. M. Turing (22), has been
used in species and population size estimation. The basic idea is that,
whereas it is difficult to estimate population size when capture prob-
abilities vary among animals, the sample coverage can nonetheless be well
estimated in such a case. Therefore, in the optimal martingale approach,
we first estimate the sample coverage and then use it to estimate the
population size.

This paper establishes asymptotic properties of the optimal estimating
function/sample coverage approach for model Mh. We illustrate these
properties when the capture probabilities have a beta distribution as this
is a common model for capture probabilities. We show that the bias is
reasonable for a range of beta distributions but can become quite large in
some cases. These cases correspond to a proportion of individuals that are
essentially uncatchable. We also examine the behaviour of a bootstrap
estimator of the variance. In Section 2 we outline the derivation of the
estimators for model Mh. In Section 3 our general results are presented,
with technical details in Appendices A.1–A.7. In Section 4 we present
results on the asymptotic biases when the capture probabilities have a beta
distribution. The results are discussed in Section 5.

2. THE MARTINGALE ESTIMATORS

We first derive the optimal estimating equations and the resulting
estimator of (17). Suppose the population consists of N individuals.
We assume the capture probabilities of these N individuals are randomly
sampled from a distribution with mean �p and variance �2p , and assume
the individuals behave independently of one another. Denote the resulting
vector of probabilities by pe¼ ð p1, p2, . . . , pNÞ

T , the conditional mean
of these capture probabilities by p ¼

PN
i¼1 pi=N and the conditional coeffi-

cient of variation (CV) by � ¼ ½
PN

i¼1ð pi � �ppÞ2=N�
1=2= �pp. Consider a capture

experiment conducted on occasions j ¼ 1, 2, . . . , t. Let uj denote the
number of individuals captured for the first time on occasion j, mj

the number of previously marked animals captured on occasion j, and nj
denote the total number of animals captured on occasion j. Similarly
let Mj denote the number of individuals captured on occasions
1, 2, . . . , j � 1, with M1 ¼ 0, let fl, j be the number of individuals captured
exactly l times on occasions 1, . . . , j and let n ¼Mtþ1 denote the total
number of distinct individuals captured. Let Xij take the value 1 if individual
i is captured on occasion j and 0 otherwise. The sample coverage of samples
1, 2, . . . , j is defined by Cj ¼

PN
i¼1 piIð

Pj
k¼1 Xik > 0Þ=

PN
i¼1 pi, with C0 ¼ 0.
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We show in A.1 that given p1, . . . , pN , EðukjF k�1Þ ¼ ðN �NCk�1Þ �pp,

similarly, EðmkjF k�1Þ ¼ NCk�1 �pp, varðukjF k�1Þ ¼ ð1� Ck�1Þð
PN

i¼1 piÞ �

ð1� C0
k�1Þð

PN
i¼1 p

2
i Þ, where C0

k ¼
PN

i¼1 p
2
i I ½
Pk

j¼1Xij > 0�=
PN

i¼1 p
2
i : Under

the assumption that Ck�1  C0
k�1, which results in suboptimal but estimable

weights, the approximations varðukjF k�1Þ  ðN �NCk�1Þ �pp ½1� ð1þ �2Þ �pp�,
and varðmkjFk�1Þ  NCk�1 �pp ½1� ð1þ �2Þ �pp � are used in (17) to derive app-
roximately optimal weights.

If NCk�1 is treated as a function of N, it is only possible to estimate
the confounded multiplicative effect N �pp and we would not be able to
separately estimate the parameters N and �pp. Let M�

k ¼ NCk�1, k � 2,
M�

1 ¼ 0 and gk ¼ ð g1k, g2kÞ
T
¼ ðuk � ðN �M�

kÞ �pp,mk �M�
k �ppÞ

T , so that
EðgkjF k�1Þ ¼ 0. Let � ¼ ðN, �ppÞT . The optimal estimating equations are
given by g ¼

Pt
k¼1 D

T
k V

�1
k gk ¼ 0, where Dk ¼ Eð@gk=@�jF k�1Þ and

Vk ¼ CovðgkjF k�1Þ. Assuming that Ck�1 and M�
k are known, and noting

that covðg1k, g2kÞ ¼ 0, and using the approximations to the variances noted
above, the optimal estimating equations are of the form

Xt
j¼1

ð1� Cj�1Þ
�1 uj � ðN �M�

j Þ �pp
� �

¼ 0, ð2:1Þ

and
Pt

j¼1ðnj �N �ppÞ ¼ 0: The latter equation yields

�pp ¼ ðtNÞ
�1
Xt
j¼1

nj: ð2:2Þ

The asymptotic properties of the resulting estimators for known M�
j are

derived in A.3 as an intermediate step in deriving the properties of the
final estimator. We follow (13,17), and estimate M�

j by

M̂M�
j ¼Mj þ �̂�2f1, j�1: ð2:3Þ

where �2 ¼ N�1PN
i¼1ð pi � �ppÞ2= �pp2 which is estimated by

�̂�2 ¼ max
N̂N0t

X
k
kðk� 1Þ fk, t

ðt� 1Þ
X

k
nk

� �2 � 1, 0

8><>:
9>=>;

with N̂N0 ¼Mtþ1=ĈCt, where ĈCt is defined below. This estimator of the CV
is examined in A.2 and the approximation (2.3) in A.5. The sample coverage
is estimated by ĈCj�1 ¼ 1� f1j=

Pj
k¼1 nk. We show in A.2 that ĈCj�1 is

asymptotically equivalent to Cj�1 in the sense that they both have the same
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limit as N ! 1. Substitution of (2.2) in (2.1) and replacing the unknown
quantities by their estimates, results in the estimator

N̂N ¼

Xt

j¼1

�
1� ĈCj�1

��1
M̂M�

jXt

j¼1

�
1� ĈCj�1

��1
1� tuj=

X
nk

� � :
A bootstrap procedure based on the multinomial to estimate the

standard errors of the estimator of (17). The bootstrap procedure proposed
in (17) is equivalent to resampling N̂N capture histories from a population of
size N̂N consisting of the n observed capture histories augmented by N̂N � n
uncaptured individuals. The simulations of (17) also indicate that in the
cases they examine, the bootstrap estimate of the variance performs well
with perhaps a slight tendency to overestimate the variance of the estimator
for larger values of 	 and 
 and underestimate the variance for smaller
values. As noted in the proof of Theorem 2, we have not been able to
examine this bootstrap procedure analytically. Therefore we consider
an alternative bootstrap estimator where we resample n capture histories
from the n observed capture histories. This is similar to the multinomial
model of (17) but we do not resample from the estimated number of
uncaptured individuals. In this approach we are effectively conditioning on
the number of captured individuals. We conjecture that the bootstrap
procedure of (17) may eventually be found to be preferable.

Here we investigate the asymptotic properties of the estimator. These
results have limited practical application but do indicate when the optimal
martingale/sample coverage estimator may be expected to perform well
and when it may perform badly. Our approach is based on showing that
asymptotically the estimator is the weighted sum of a sum of uncondition-
ally independently and identically distributed zero mean random vectors
plus a bias term. In particular, we are able to apply the central limit
theorem to the sum and use the representation to asymptotically examine
a possible bootstrap estimator of the variance.

3. MAIN RESULTS

The martingale approach allows the use of standard arguments to
establish a central limit theorem.

Theorem 1. Let �p ¼ Eð pÞ, where p has the common distribution of the pi,
~CCj¼Eðpð1�ð1�pÞjÞÞ=�p, B

�
¼
Pt

j¼1ð1�
~CCj�1Þ

�1 ~CCj�1, Aj¼B
��1

ð1� ~CCj�1Þ
�1,

ANALYSIS OF MARK RECAPTURE DATA 579
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~AAj¼Aj=�p, A¼ð ~AA1,..., ~AAt,A2,...,AtÞ
T , �AA¼ðA2,...,AtÞ

T , and �¼

ð�2,�3,...,�tÞ
T where

�j ¼ E ð1� pÞ j�2 1�
p

�p

� �
ð1� pÞ � ��2ð j � 1Þp

� �� �
with ��2

¼ Eð1� ð1� pÞtÞ�2p=fðEð pð1� ð1� pÞtÞÞ�pÞg, �
2
p being the variance

of the capture probabilities, and � a ð2t� 1Þ � ð2t� 1Þ covariance matrix
defined in A.6. Then, N�1=2

ðN̂N �N þN �AAT�Þ �!
d
Nð0,AT�AÞ:

Proof. Let

~NN ¼

Xt

j¼1

�
1� ĈCj�1

��1
M�

jXt

j¼1

�
1� ĈCj�1

��1�
1� uj=

X
i

pi
� ¼ B�1

Xt
j¼1

�
1� ĈCj�1

��1
M�

j ,

where we have also replaced
P
nk=t by

P
pi as ðNtÞ�1

PN
i¼1 pi and

N�1Pt
k¼1 nk have the same limit. We show in A.3. that ~NN is an asymptoti-

cally unbiased estimator of N. Furthermore, from A.5, asymptotically,

lim
N!1

N�1
ð ~NN � N̂NÞ ¼ B��1

Xt
j¼1

�
1� ~CCj�1

��1
lim
N!1

N�1
�
M�

j � M̂M�
j

�
¼ B��1

Xt
j¼1

�
1� ~CCj�1

��1
�j :

Let A ¼ ð ~AAT , �AAT ÞT , W ¼ ðYT,VT
Þ
T where Y and V are vectors with ele-

ments uj � EðujjF j�1Þ and M̂M�
j �M�

j þN�j respectively as defined in A.1
and A.5. Then W has mean vector zero, and unconditionally is the sum
of i.i.d. vectors Wi that each have a covariance matrix denoted by �. This
matrix is examined in A.6. Now, asymptotically,

N�1=2
ðN̂N �NÞ ¼ N�1=2

ð ~NN �NÞ þN�1=2
ðN̂N � ~NNÞ

¼ N�1=2 ~AATY þN�1=2 �AATV �N1=2 �AAT�

¼ N�1=2ATW �N1=2 �AAT�:

Thus we may apply the central limit theorem to determine the asymptotic
distribution of our estimator and hence,

N�1=2
ðN̂N �N þN �AAT�Þ �!

d
Nð0,AT�AÞ:
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Theorem 1 contains an expression for the asymptotic bias in the
general case. We determine in A.6 that the asymptotic covariance matrix
of the estimator is complex and difficult to estimate, and thus one cannot
expect to use an analytic form of the variance in practice. We now state the
general properties of our bootstrap estimator. Let�11 denote the t� tmatrix
with common entries ½Eð p2ð1�pÞtÞþE2

ð pð1�pÞtÞ�, �22 the ðt� 1Þ � ðt� 1Þ
matrix ��TEðð1� pÞtÞf1þ Eðð1� pÞtÞg, �21 the ðt� 1Þ � t matrix
�1eTEð pð1� pÞtÞf1þ Eðð1� pÞtÞg and �12 ¼ �T

21. Define

� ¼
�11 ��12

��21 �22

� �
:

Theorem 2. Let ~VVðN̂NÞ denote the bootstrap estimate of the variance VðN̂NÞ

of N̂N. Then, N�1
ðVðN̂NÞ � ~VVðN̂NÞÞ �!

p
AT�A.

Proof. First let �i ¼ 1 if individual i is captured at least once and 0 other-
wise. Let Yi ¼ ðYi1, . . . ,YitÞ

T , recall Vi ¼ ðVi1, . . . ,VitÞ
T and let Wi ¼

ðYT
i ,V

T
i Þ

T so that W ¼
PN

i¼1Wi. We are using limiting arguments so
that the vector A may be regarded as a constant. Unconditionally the
Wi�i are independently and identically distributed, with covariance
matrix ~�� 6¼ � that is examined in A.7. Hence applying the bootstrap
to W1�1, . . . ,WN�N allows the estimation of ~��. Then n�1

Pn
i¼1WiW

T
i �i ¼

n�1NN�1PN
i¼1WiW

T
i �i as �i ¼ 0 for uncaptured individuals. Now

N�1n �!
p
E 1� ð1� pÞt
� �

and N�1PN
i¼1WiW

T
i �i �!

p
~��, hence n�1

PN̂N
i¼1

WiW
T
i �i �!

p
~��=E 1� ð1� pÞt

� �
¼ ��: We thus conclude that the bootstrap

applied to the captured individuals W1�1, . . . ,Wn�n, estimates ��. Thus,
asymptotically, the bootstrap estimate ~VVðN̂NÞ of VðN̂NÞ is nAT ~��A and hence
for large N, VðN̂NÞ � ~VVðN̂NÞ  NAT�A�E 1� ð1� pÞt

� ��1
nAT ~��A: As noted

above, N�1n̂n �!
p
E 1� ð1� pÞt
� �

which along with the definition of �,
yields the Theorem.

We have not been able to apply this argument to the bootstrap
procedure proposed by (17) as it is possible that N̂N > N which requires
more complex arguments.

4. THE BETA (	, 
) CASE

The key to the estimator is the approximation (2.3) and the estimation
of the coefficient of variation, both of which introduce some bias. The
general form for the bias is given in Theorem 1 and the bias in bootstrap
estimate of the variance in Theorem 2. As the beta distribution is a common
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model for heterogeneous probabilities and our results are most transparent
in this case, we examine the bias when the capture probabilities have a beta
distribution.

Theorem 3. If the capture probabilities have a beta (	,
) distribution then
the asymptotic bias of N̂N as a proportion of N is �Pð	
Þ where Pð	,
Þ ¼

B��1Pt
j¼2ð1�

~CCj�1Þ
�1dj , with ~CCj�1¼ 1�Bð	þ1,
þ j�1Þð	þ
Þ= ðBð	,
Þ	Þ,

B�
¼
Pt

j¼1ð1�
~CCj�1Þ

�1 ~CCj�1,

dj ¼
Bð	,
þ j � 1Þ

Bð	,
Þ
�
ð	þ 
ÞBð	þ 1, 
þ j � 1Þ

	Bð	,
Þ

�
a
ð j � 1ÞBð	þ 1, 
þ j � 2Þ

	ð	þ 
þ 1ÞBð	,
Þ

with B denoting the beta function and

a ¼
	=ð	þ 
Þ 1� Bð	,
þ tÞ=Bð	,
Þð Þð Þ

	=ð	þ 
Þ � Bð	þ 1,
þ tÞ=Bð	,
Þð Þ
:

Proof. To obtain Theorem 3, we need to evaluate

E
�
ð1� pÞk�2

�
ð1� p=�pÞð1� pÞ � ��2ðk� 1Þp

��
¼ E

�
ð1� pÞk�1

�
�

1

�p
E
�
pð1� pÞk�1

�
� ��2

ðk� 1ÞE
�
pð1� pÞk�2

�
for the beta(	,
) distribution. Now

E
�
pð1� pÞk�1

�
¼

Bð	þ 1,
þ k� 1Þ

Bð	,
Þ
,

E
�
pð1� pÞk�2

�
¼

Bð	þ 1,
þ k� 2Þ

Bð	,
Þ
Eð pÞ ¼

	

	þ 

,

Eðð1� pÞk�1 ¼
Bð	,
þ k� 1Þ

Bð	,
Þ
, �2 ¼




	ð	þ 
þ 1Þ
,

and ��2
¼ a�2, where a is a� of A.4 evaluated for the beta ð	,
Þ distribution

as given in the statement of Theorem 3, which, once we observe that
the asymptotic bias is the limit of N�1

ðN̂N � ~NNÞ, yields Theorem 3.
In Figure 1 we plot �Pð	,
Þ against 	 and 
 for 	,
 2 ½0:1, 5� for t¼ 5.

This Figure shows that for 	 > 2 the bias is reasonable, being less than 10%.
However, for small values of 	 and 
 the bias becomes large approaching
a maximum of 90% for values of 	 close to 0.1. Comparisons with the
simulation results of (17) suggest that the asymptotic bias slightly under-
estimates the true bias in finite samples.
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As a Corollary of Theorem 2 we have:

Theorem 4. Let d ¼ ðd2, . . . , dtÞ
T and let b be the vector with elements

bj ¼ B��1
ð1� ~CCj�1Þ

�1
ð	þ 
Þ=	, j ¼ 1, . . . , t and bt�1þk ¼ B��1

ð1� ~CCk�1Þ
�1,

k ¼ 2, . . . , t. Further, define the matrix

~�� ¼
~��11 � ~��12

� ~��21
~��22

 !

where ~��11 has common entries Bð	þ 2, 
þ tÞ=Bð	,
Þþ ðBð	þ 1, 
þ tÞ=
Bð	,
ÞÞ2, ~��22 ¼ ddT � c1 where c1 ¼ Bð	,
þ tÞ=Bð	,
Þð1þ Bð	,
þ tÞ=
Bð	,
ÞÞ, ~��21 ¼ d1

T
� c2 where c2 ¼ Bð	þ 1, 
þ tÞ=Bð	,
Þð1þ Bð	,
þ tÞ=

Bð	,
ÞÞ and ~��12 ¼
~��T
21. Let ~VVðN̂NÞ denote our bootstrap estimate of the var-

iance. If the capture probabilities have a beta (	,
) distribution then the
asymptotic bias of ~VVðN̂NÞ, as a proportion of N is Vð	,
Þ ¼ �bT ~��b:

Figure 1. The bias as a proportion of the population size for t¼ 5 capture occa-
sions as a function of 	 and 
 when the capture probabilities have a beta (	,
)
distribution. (The minimum plotted values of 	 and 
 are 0.1).
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Thus asymptotically we expect the bootstrap considered here to
underestimate the variance. However, as we have used asymptotic results
which ignore the finite sample sources of variation involved in estimating
the sample coverage and the coefficient of variation, this may not hold
for smaller samples. The simulation results of (17) reveal in some cases
their bootstrap slightly over estimates the variance. This may be due to
the extra variability in that (17) do not condition on the number of captures.
Moreover, as it is possible that N̂N > N and a version of our argument in the
proof of Theorem 2 may be applied when N̂N < N it is feasible that the bias
in the (17) bootstrap estimator may be smaller.

In Figure 2 we plot Vð	,
Þ against 	 and 
. This figure is consistent
with the finite sample simulations of (17) in that the bias is small for larger
values of 	 and 
 but becomes quite large for small values of 	. The largest
bias occurs when 	 is small and 
 is large and in this case the capture
probabilities are uniformly low.

Figure 2. The bias in the bootstrap estimate of the variance as a proportion of the

population size for t¼ 5 capture occasions as a function of 	 and 
 when the capture
probabilities have a beta (	,
) distribution. (The minimum plotted value of 	 and 

is 0.5).
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5. DISCUSSION

Our asymptotic results show that as suggested by the simulations of
(17) and others the sample coverage estimators perform well for a range of
distributions for the capture probabilities but can perform poorly in some
cases. In these cases a proportion of the individuals have small capture
probabilities. The bias in the estimated population size is sensitive to these
low capture probabilities. The bias in the bootstrap estimate of the variance
considered here behaves a little differently in that it increases dramatically as
a proportion of the population size as the capture probabilities cluster
around zero.

To remedy the bias in the estimator, one suggestion could be that extra
terms be included in the approximation (2.3). However, for 	<1 there are
a number of essentially uncatchable individuals in the population, which
would appear to be the source of the bias in the sample coverage estimators.
A possible resolution of this problem is to note that if there are a number of
individuals with low capture probabilities then the catchable population
increases with effort suggesting that a comparison of estimates based on
subsets of the capture occasions may provide a useful test. Alternatively
a sequential procedure may be considered. Moreover, refinements of the
estimator proposed by (17) are possible. For example, we may derive an
alternate closed form estimator if we treat N in the CV formula as an
unknown and solve the resulting estimating equations. An examination of
the properties of this estimator is beyond the scope of the present work and
shall be conducted elsewhere.

APPENDICES

A.1. Behaviour of uj

The asymptotic distribution of the estimators depends on that
of M�

j � M̂M�
j and of uj ¼

PN
i¼1 Ið

Pj�1
k¼1Xik ¼ 0ÞIðXij ¼ 1Þ: Note that

N�1uj�!
a:s:
Eðpð1� pÞ j�1Þ. Let F j�1 denote the �-field generate by the capture

histories up to occasion j. Then it is easily seen that given p1, . . . , pN ,

E ujjF j�1

� �
¼ E

XN
i¼1

I
Xj�1
k¼1

Xik ¼ 0,Xij ¼ 1ÞjF j�1

( )

¼
XN
i¼1

I
Xj�1
k¼1

Xik ¼ 0

 !
pi ¼ ðN �M�

j Þ �pp ¼ Nð1� Cj�1Þ �pp
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Let Yij ¼ Ið
Pj�1

k¼1Xik ¼ 0ÞðIðXij ¼ 1Þ � piÞ, Yð jÞ ¼ uj �EðujjF j�1Þ ¼
PN

i¼1Yij,
Y ¼ ðYð1Þ, . . . ,YðtÞÞ

T , and note that given pi, EðYijjF j�1Þ ¼ 0, EðY2
ij jF j�1Þ ¼

pið1� piÞIð
Pj�1

k¼1 Xik ¼ 0Þ so that EðY2
ij Þ ¼ pið1� piÞ

j, and for fixed j, the Yij
are independent i ¼ 1, . . . , n. Moreover, unconditionally, for fixed j, the Yij
are independently and identically distributed. Thus the central limit theorem
may be applied to N�1=2PN

i¼1Yij. Furthermore, for fixed i, it is easily seen
that the Yij are martingale differences and are hence uncorrelated. Hence,
the joint distribution of N�1=2Y is multivariate normal with mean vector 0
and the covariance matrix � is diagonal with kth diagonal element
Eð pð1� pÞkÞ.

A.2. Asymptotic Behaviour of the Estimated Sample Coverage

Note that (12) derived the estimator of the sample coverage from
an examination of the moments of various quantities. Here we show that
as the population size increases, the sample coverage estimator and the
sample coverage converge a.s. to the same limit and are thus asymptotically
equivalent. Note that f1j ¼

PN
i¼1 Ið

Pj
k¼1 Xik ¼ 1Þ so that Eð f1jÞ ¼

PN
i¼1 jE

ð pið1� piÞ
j�1

Þ ¼ NjEð pð1� pÞ j�1Þ: Hence, as the individuals are assumed

to behave independently, the law of large numbers implies that N�1
�

f1j �!
a:s:

jEð pð1� pÞ j�1Þ: As
Pj

k¼1 nk ¼
PN

i¼1

Pj
k¼1 IðXik ¼ 1Þ, once again

the law of large numbers implies that N�1Pj
k¼1 nk �!

a:s:
jEð pÞ: Thus,

ĈCj�1 �!
a:s:

1�
E pð1� pÞ j�1
� �

E pð Þ
¼
E pð1� ð1� pÞ j�1Þ
� �

E pð Þ

¼
E p

Xj�1

k¼1
IðXik > 0Þ

� �
E pð Þ

¼ eCCj�1

but N�1PN
i¼1 pi �!

a:s:
E pð Þ and N�1PN

i¼1 piIð
Pj�1

k¼1 Xik > 0Þ �!
a:s:

Eð pi�

ð
Pj�1

k¼1 IðXik > 0ÞÞ. Thus, unconditionally, ĈCj�1 and Cj�1 are asymptotically

equivalent.

A.3. Estimators with Known M�
j

Consider

~NN ¼

Xt

j¼1

�
1� ĈCj�1

��1
M�

jXt

j¼1

�
1� ĈCj�1

��1�
1� uj=

X
i

pi
� ¼ B�1

Xt
j¼1

�
1� ĈCj�1

��1
M�

j ,
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where we have also replaced
P
nk=t by

P
pi as ðNtÞ�1

PN
i¼1 pi and

N�1Pt
k¼1 nk have the same limit. Consider the denominator B. The

crucial term is uj=
P

i pi but this is just N
�1uj= �ppt which as is shown in A.1

and A.2 converges a.s. to 1� ~CCj�1 defined in A.2, so that B �!
p
B�

¼Pt
j¼1ð1�

~CCj�1Þ
�1 ~CCj�1 as N ! 1. Also let �p denote the limit of �pp as

N ! 1. Now, N�1
ð ~NN�NÞ¼ �pp�1B�1Pt

j¼1ð1�Cj�1Þ
�1N�1

fuj�ðN�M�
j Þ �ppg

which is asymptotically the same as ��1
p B

��1Pt
j¼1 ð1� ~CCj�1Þ

�1N�1
fuj�

Nð1� Cj�1Þ �ppg �!
p

0: Hence, ~NN is an asymptotically unbiased estimator
of N. Thus, the asymptotic bias is due to the estimation of M�

j by M̂M�
j . If

we let ~AA ¼ ð ~AA1, . . . , ~AAtÞ
T , where ~AAj is as defined in Theorem 1, then follow-

ing A.1 we may write N�1=2
ð ~NN �NÞ ¼ N�1=2 ~AAY which is asymptotically

normal with zero mean and variance ~AAT� ~AA which reduces to
��2
p B

��2Pt
j¼1ð1�

~CCj�1Þ
�2Eð pð1� pÞ jÞ.

A.4. Estimating the CV

The estimator M̂M�
j involves an estimate of the coefficient of variation.

We have estimated the CV, �2 ¼ N�1PN
i¼1ð pi � �ppÞ2= �pp2, by

�̂�2 ¼ max
N̂N0t

X
k
kðk� 1Þ fk, t

ðt� 1Þ
X

k
nk

� �2 � 1, 0

8><>:
9>=>;

where N̂N0 ¼Mtþ1=ĈCt. First consider

�̂��2
¼ max

Nt
X

k
kðk� 1Þ fk, t

ðt� 1Þ
X

k
nk

� �2 � 1, 0

8><>:
9>=>;

Now,

Nt
X

k
kðk� 1Þ fk

ðt� 1Þ
X

k
nk

� �2 � 1 ¼

X
k
kðk� 1ÞN�1fk, t

tðt� 1Þ �pp2
� 1: ðA:4:1Þ

However,X
k

kðk� 1ÞN�1fk, t �!
p X

k

kðk� 1ÞE
t

k

� �
pkð1� pÞt�k

� �

¼ E
X
k

kðk� 1ÞN�1fk, t

 !
¼ N�1E tðt� 1Þ

XN
i¼1

p2i

 !
¼ tðt� 1ÞEðp2Þ
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using (3.15) of (12). Thus, (A.4.1) reduces to ðEð p2Þ � �2
pÞ=�

2
p ¼ �2p=�

2
p. Next

note that

N�1N̂N0 ¼
N�1Mtþ1

ĈCt
�!
p E 1� ð1� pÞt

� �
�p

E pð1� ð1� pÞtÞ
� � ¼ a�

When the capture probabilities have a beta (	,
) distribution this latter
quantity is equal to a given in Theorem 3. Let ��2

¼ a��2p=�
2
p denote the

limit in probability of �̂�2.

A.5. Estimating M�
j

The estimating equations involve an approximation to estimation of
NCk�1 ¼M�

k which we now examine. Let pe¼ ð p1, . . . , pNÞ
T . Now,

M�
k ¼

XN

i¼1
piI
�Xk�1

j¼1
Xij > 0

�
�pp

¼
XN
i¼1

pi
�pp
I
Xk�1
j¼1

Xij > 0

 !
, and

Mk ¼
XN
i¼1

I
Xk�1
j¼1

Xij > 0

 !

with M1 ¼M�
1 ¼ 0 so that

E
�
M�

k �Mkj pe� ¼ �pp�1
XN
i¼1

ð pi � �ppÞ
�
1� ð1� piÞ

k�1
�

¼ � �pp�1
XN
i¼1

ð pi � �ppÞð1� piÞ
k�1

and hence as in (3.12) of p. 205 of (12), for a remainder term R,
EðM�

k �Mkj peÞ ¼ f1, k�1�
2
þ R: This motivated the approximation

M̂M�
k ¼Mk þ f1, k�1�̂�

2 of (17). To determine the bias arising from the approxi-
mation note that for k � 2,

�k ¼ lim
N!1

N�1
�
M�

k � M̂M�
k

�
¼ lim

N!1
N�1 M�

k �Mk � f1, k�1�
�2

� �
¼ lim

N!1
N�1

XN
i¼1

I
Xk�1
j¼1

Xij > 0

 !
pi
�p

� 1

� �
� ��2I

Xk�1
j¼1

Xij ¼ 1

 !( )
¼ E ð1� pÞk�2 ð1� p=�pÞð1� pÞ � ��2

ðk� 1Þp
� �n o

:
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To determine the asymptotic distribution of the approximation, write

M�
j � M̂M�

j ¼
XN
i¼1

I
Xj�1
k¼1

Xik > 0

 !
pi
�p

� 1

� �
� ��2I

Xj�1
k¼1

Xik ¼ 1

 !( )

¼
XN
i¼1

Zij

Let �AA ¼ ðA2, . . . ,AtÞ
T , where Aj is as defined in Theorem 1, let Vð jÞ ¼

M̂M�
j �M�

j þN�j ¼
PN

i¼1ðZij þ �jÞ, and let V ¼ ðVð2Þ, . . . ,VðtÞÞ
T . Then V has

mean vector zero, and unconditionally is the sum of i.i.d. vectors
Vi ¼ ðVi2, . . . ,VitÞ

T that each have a covariance matrix that we denote
by �. Let � ¼ ð�2, . . . , �tÞ

T . Now, N�1=2
ðN̂N � ~NNÞ ¼ N�1=2 �AATV �N1=2 �AAT�:

Hence, N�1=2
ðN̂N � ~NN þN �AAT�Þ �!

d
Nð0, �AAT� �AAÞ:

A.6. The Covariance Matrix of Wi

Recall W ¼ ðYT,VT
Þ
T . Write

� ¼
� O

OT �

� �
,

where we have already determined � in A.1. In Lemmas 1–2 we consider
the covariance matrix � of the Vi, and in Lemma 3 the covariance matrix O
of Y and V, which allows the construction of the theoretical covariance
matrix � of the Wi.

Lemma 1.

E V2
ij

� �
¼ E f1� ð1� pÞ j�1g

pi
�p

� 1

� �2
 !

þ ��4
ð j � 1ÞE pið1� piÞ

j�2
� �

þ �2j

þ 2�jE 1� ð1� piÞ
j�1

� � pi
�p

� 1

� �� �
� 2��2�jð j � 1ÞE pið1� piÞ

j�2
� �

� 2��2
ð j � 1ÞE pið1� piÞ

j�2 pi
�p

� 1

� �� �
:
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Proof. Note that

V2
ij ¼ I

Xj�1
k¼1

Xik > 0

 !
pi
�p

� 1

� �2

þ��4I
Xj�1
k¼1

Xik ¼ 1

 !
þ �2j

þ 2I
Xj�1
k¼1

Xik > 0

 !
pi
�p

� 1

� �2

�j � 2��2�jI
Xj�1
k¼1

Xik ¼ 1

 !

� 2��2I
Xj�1
k¼1

Xik ¼ 1

 !
pi
�p

� 1

� �
:

and taking expectations yields the lemma.

Lemma 2. For k < j,

E VijVik
� �

¼E 1�ð1�piÞ
k�1

n o pi
�p

�1

� �2
 !

���2ðk�1ÞE

� pið1�piÞ
k�2 pi

�p
�1

� �� �
þ�kE

n
1�ð1�pÞ j�1

o pi
�p

�1

� �� �
���2

ðk�1ÞE pið1�piÞ
k�2

ð1�pÞ j�kþ1
pi
�p

�1

� �� �
þ��4

ðk�1ÞE pð1�pÞk�2ð1�pÞ j�kþ1
� �

þ�k�
�2
ð j�1ÞE

�
pð1�pÞ j�2

�
þ�jE

n
1�ð1�pÞk�1

o pi
�p

�1

� �� �
��j�

�2
ðk�1ÞEðpð1�pÞk�2Þþ�j�k:

Proof.

VijVik ¼ I
Xk�1
l¼1

Xil > 0

 !
pi
�p

� 1

� �2

���2I
Xk�1
l¼1

Xil ¼ 1

 !
pi
�p

� 1

� �

þ �kI
Xj�1
l¼1

Xil > 0

 !
pi
�p

� 1

� �

� ��2I
Xk�1
l¼1

Xil > 0

 !
I
Xj�1
l¼1

Xil ¼ 1

 !
pi
�p

� 1

� �
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þ ��4I
Xj�1
l¼1

Xil ¼ 1

 !
I
Xk�1
l¼1

Xil ¼ 1

 !
þ �k�

�2I
Xj�1
l¼1

Xil ¼ 1

 !

þ �j
pi
�p

� 1

� �
I
Xk�1
l¼1

Xil > 0

 !
� �j�

�2I
Xk�1
l¼1

Xil ¼ 1

 !
þ �j�k

and taking expectations yields the lemma.

Lemmas 1 and 2 now yield �. Next we need to consider the covariance
between the Yi and Vi. Note that VijYij ¼ �jYij so that EðYijVijÞ ¼ 0 and
similarly EðYikVijÞ ¼ 0 for k > j. However, if k < j we have

Lemma 3. If k < j then,

E YikVij
� �

¼ E ð1� pÞk�1p
p

�p
� 1

� �� �
� E pð1� pÞ j�

�2
� �

þ �jE ð1� pÞk�1p
� �

� E

�
pð1� pÞk�1 1� ð1� pÞ j�k

� �
�

p

�p
� 1

� ��
þ ��2E p2ð1� pÞ jð j � kÞ

� �
� �jE pð1� pÞk�1

� �
:

Proof. For k < j,

YikVij ¼ I
Xk�1
l¼1

Xil ¼ 0

 !
I Xik ¼ 1ð Þ

pi
�p

� 1

� �

� I
Xk�1
l¼1

Xil ¼ 0

 !
I Xik ¼ 1ð ÞI

Xj�1
l¼kþ1

Xik ¼ 0

 !
��2

þ �jI
Xk�1
l¼1

Xil ¼ 0

 !
I Xik ¼ 1ð Þ

� piI
Xk�1
l¼1

Xil ¼ 0

 !
I
Xj�1
l¼k

Xil > 0

 !
pi
�p

� 1

� �

þ pi�
�2I

Xk�1
l¼1

Xil ¼ 0

 !
I
Xj�1
l¼k

Xil ¼ 1

 !
� pi�jI

Xk�1
l¼1

Xil ¼ 0

 !

and taking expectations yields the lemma.
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A.7. The Covariance Matrix of Wi for the Captured Individuals

Now,

W ¼
XN
i¼1

Wi ¼
XN
i¼1

Wi�i þ
XN
i¼1

Wið1� �iÞ

The bootstrap conditional on the n captured individuals allows us to
approximate the variance of

PN
i¼1Wi�i. We wish to examine how well this

approximates the true variance. Let ~�� denote the covariance matrix ofWi�i.
Then we may write

~�� ¼
~�� ~OO
~OOT ~��

� �
and � ¼ �� ~�� ¼

�11 ��12

��21 �22

� �
:

Lemma 4. Let �11 be a t� t matrix with constant elements Eð p2ð1� pÞtÞ þ
E2

ð pð1� pÞtÞ. Then ~�� ¼ CovðYi�iÞ ¼ ���11:

Proof. Recall that Yij ¼ Ið
Pj�1

k¼1 Xik ¼ 0ÞðIðXij ¼ 1Þ � piÞ: First,

EðYij�ijpiÞ ¼E I
Xj�1
k¼1

Xik¼ 0

 !
I Xij ¼ 1
� �

�pi
� �

I
Xt
k¼1

Xik> 0

 !����pi
" #

¼E I
Xj�1
k¼1

Xik¼ 0

 !
I Xij ¼ 1
� �"

�piI
Xj�1
k¼1

Xik ¼ 0

 !
I
Xt
k¼j

Xik > 0

 !����pi
#

¼ ð1�pÞ j�1pi�pið1�piÞ
j�1
�
1�ð1� piÞ

t�ð j�1Þ
�
¼ pið1�piÞ

t:

and as

E Y2
ij�ijpi

� �
¼ E I

Xj�1
k¼1

Xik ¼ 0

 !
I
Xt
k¼1

Xik > 0

 !
IðXij ¼ 1Þ � pi
� �2��pi

( )

¼ E I
Xj�1
k¼1

Xik ¼ 0

 !
I
Xt
k¼1

Xik > 0

 !(

� ðIðXij ¼ 1Þ � 2IðXij ¼ 1Þpi þ p2i Þ
��pi
)

¼ ð1� piÞ
j�1pið1� 2piÞ þ ð1� piÞ

j�1
�
1� ð1� piÞ

t�ð j�1Þ
�
p2i

¼ pið1� piÞ
j�1

� p2i ð1� piÞ
j�1

� p2i ð1� piÞ
t
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we see that VðYij�ijpiÞ is just

E Yij�i � pið1� piÞ
t

� �2��pin o
¼ pið1� piÞ

j�1
� p2i ð1� piÞ

j�1

� p2i ð1� piÞ
t
� p2i ð1� piÞ

2t

and hence, VðYij�iÞ ¼ Eðð1� pÞ jpÞ � Eð p2ð1� pÞtÞ � E2
ð pð1� pÞtÞ ¼ e��jj:

However, for k < j, we lose the martingale property and

YijYik�i ¼ �piI
Xj�1
l¼1

Xil ¼ 0

 !
I Xij ¼ 1
� �

þ p2i I
Xj�1
l¼1

Xil ¼ 0

 !
I
Xt
l¼j

Xij > 0

 !

so that EðYijYik�ij piÞ ¼ �p2i ð1� piÞ
t and hence CovðYij�i,Yik�iÞ ¼

�Eð p2ð1� pÞtÞ � E2
ð pð1� pÞtÞ ¼ e��jk:

Lemma 5.

~�� ¼ CovðVi�iÞ ¼ �� ��TE ð1� pÞt
� �

1þ E ð1� pÞt
� �� �

¼ ���22:

Proof. Recall

Vij ¼ I
Xj�1
k¼1

Xik > 0

 !
pi
�p

� 1

� �
� ��2I

Xj�1
k¼1

Xik ¼ 1

 !
þ �j

Then Vij�i ¼ Vij � �jIð
Pt

k¼1 Xik ¼ 0Þ, so that, EðVij�iÞ ¼ ��jEðð1� pÞtÞ,
Vi�i ¼ Vi � �ð1� �iÞ and Við1� �iÞ ¼ �ð1� �iÞ. Thus, ViV

T
i �i ¼ ViV

T
i �

Vi�
T
ð1� �iÞ � �VT

i ð1� �iÞ þ ��T ð1� �iÞ and hence EðViV
T
i �iÞ ¼ EðViV

T
i Þ�

��TEðð1� pÞtÞ: Subtraction of EðVi�iÞ from the l.h.s. yields the lemma.

Lemma 6.

~OOT
¼CovðVi�i,Yi�iÞ¼OT

þ�1
~

TE pð1�pÞt
� �

1þE ð1�pÞt
� �� �

¼OT
þ�21:

Proof. Note that EðYijð1� �iÞÞ ¼ �Eð piIð
Pt

k¼1Xik ¼ 0ÞÞ so that

E ViY
T
i �i

� �
¼ E ViY

T
i

� �
� �E YT

i ð1� �iÞ
� �

¼ EðViY
T
i Þ þ �1

~

TEðpð1� pÞtÞ

Subtracting the product of appropriate mean vectors (i.e. ��1
~

TEðpð1� pÞÞ�
Eð1� pÞt) yields the lemma.
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