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SUMMARY. Consider a stochastic abundance model in which the species arrive in the sample according
to independent Poisson processes, where the abundance parameters of the processes follow a gamma dis-
tribution. We propose a new estimator of the number of species for this model. The estimator takes the
form of the number of duplicated species (i.e., species represented by two or more individuals) divided by an
estimated duplication fraction. The duplication fraction is estimated from all frequencies including singleton
information. The new estimator is closely related to the sample coverage estimator presented by Chao and
Lee (1992, Journal of the American Statistical Association 87, 210-217). We illustrate the procedure using
the Malayan butterfly data discussed by Fisher, Corbet, and Williams (1943, Journal of Animal Ecology 12,
42-58) and a 1989 Christmas Bird Count dataset collected in Florida, U.S.A. Simulation studies show that
this estimator compares well with maximum likelihood estimators (i.e., empirical Bayes estimators from the

Bayesian viewpoint) for which an iterative numerical procedure is needed and may be infeasible.
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1. Introduction

The problem of estimating the number of species has been dis-
cussed extensively in the biological and ecological literature
(Wilson and Collins, 1992; Bunge and Fitzpatrick, 1993; Col-
well and Coddington, 1994; Bunge, Fitzpatrick, and Handley,
1995; Colwell, 1997). Various approaches have been proposed.
First, we can fit a parametric distribution to the observed fre-
quency counts and use the estimated parameter values to es-
timate the number of species, typically using maximum like-
lihood either in stages or globally. This can be traced back
to Greenwood and Yule (1920) and to Fisher, Corbet, and
Williams (1943). Recently, Norris and Pollock (1998) gave a
nonparametric maximum likelihood version of this approach.
Alternatively, a nonparametric estimator can be based on the
coverage of the sample, which is the fraction of the popula-
tion represented by the species that have been discovered. The
concept of coverage also has a long history, but the coverage-
based estimators considered here were first proposed by Chao
and Lee (1992). Finally, we can view the species problem
from the perspective of mark-recapture methodologies; for
this point of view, see Burnham and Overton (1979), Boulin-
ier et al. (1998), and Nichols et al. (1998a,b).

The estimator we develop in this article shares aspects of
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all of these approaches. It is nonparametric in form, but it
has some optimality properties under a particular paramet-
ric model. It is not directly likelihood based, but its behav-
ior is linked to the likelihood and its performance compares
well with the parametric maximum likelihood estimator. It is
simple to compute, and there is reason to believe that it may
have some robustness outside of the specific parametric model
where it is known to perform well.

The estimation methods considered in this article are based
on a mixed Poisson sampling model. Each species indepen-
dently contributes representatives to the sample according to
a Poisson process, and the rate or abundance parameters for
these processes are taken to be i.i.d. random variables from
some fixed distribution indexed by a low-dimensional param-
eter. Many candidates for the mixing distribution have been
proposed, including the log normal (Bulmer, 1974), the in-
verse Gaussian (Ord and Whitmore, 1986), and the general-
ized inverse Gaussian (Sichel, 1986). Here we focus on the sim-
ple and reasonably flexible gamma-mixed Poisson, or negative
binomial distribution, which was first applied to this problem
by, Greenwood and Yule (1920) and Fisher et al. (1943). We
also consider a nonparametric version of the model due to
Norris and Pollock (1998).
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Under the parametric mixed Poisson model, there are two
possible maximum likelihood estimators of the number of
species, the unconditional and the conditional (Section 2.1).
(They can also be regarded as empirical Bayes estimators if
we think of the mixing distribution as a prior having unknown
parameters that must be estimated.) Sanathanan (1972, 1977)
analyzed the asymptotic behavior of both MLEs (see also Blu-
menthal, 1992). In principle, both can be computed numer-
ically, although in practice, substantial numerical difficulties
may arise. In contrast, we propose in Section 2.2 a very simple
estimator of the number of species based on the duplication
fraction; the estimator takes the form of the number of du-
plicated species in the sample divided by an estimate of the
probability of observing a duplicated species. This estimator
has an intuitive interpretation and is closely related to Chao
and Lee’s (1992) sample coverage-based estimator. An asymp-
totic variance formula is derived in the same section. Section
2.3 discusses fitting the gamma-mixed Poisson model when
both abundant and rare species are present. In Section 3, we
illustrate the procedure using the Malayan butterfly data dis-
cussed by Fisher et al. (1943) and a 1989 Christmas Bird
Count dataset from Florida. In Section 4, simulation stud-
ies are used to show that this estimator compares well with
the MLEs. We especially study the parametric MLEs; we do
compute the nonparametric MLE (NPMLE), but a full com-
parison is a topic for future work. Some concluding remarks
and recommendations are made in Section 5.

2. Model and Estimator
2.1 Likelihood-Based Estimator

Assume there are N species or classes in the population
with abundances or sizes Ai,As,...,An. Let X; be the
number of individuals of the ith species observed in the
study period [0,¢]. The mixed Poisson model assumes that
the underlying count X; is a Poisson (tA;) random variable,
i=1,...,N,where A;,Ag,..., AN arei.i.d. random variables
from a density my, where 7 is a low-dimensional parameter
vector. In the gamma case, 7 = (, ) and mp(A) = 7o g(A) =
B*2*"1e=PX /T(a). Only those species with X; > 0 are
observed. Let n = E,—I\Ll X; denote the total sample count
and let fx, kK = 0,1,...,n, denote the number of classes
represented k times in the study period. Thus, we have
n = Zg>1 kfy and fi = =N —11[X; = k], where I[A] is the
usual indicator function. Let D = 2 111X > 0] = Zg>1 fx
denote the number of distinct classes discovered in the s_tudy
period. The goal is to estimate N (or equivalently to predict
fo) based on the observed frequency counts {f : k > 1}.
The hkehhood function is given by

(@) P T (pa(k)

k>1
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and N—D =. fg is'the number of uﬁobsérvé_d species. Without
loss of generality, we can and do take ¢t = 1 because the time
scale does not affect any of our estimates of V. This likelihood

can be factored as L(N,n) = Ly(N,n) x Lc(n), where
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Here L is a binomial likelihood with respect to the random
variable D, and L. is a conditional likelihood with respect
to the frequency counts {fx : k > 1} (cf., Sanathanan,
1972, 1977). The latter can be regarded as a multinomial
probability, allocating the D nonzero observations to the cells
1,2,...,00 or as the probability mass function of D i.i.d. zero-
truncated m-mixed Poisson random variables. In the gamma-
mixed Poisson case,

B°T(k + a)
Pok) T(k+1)T(a)(8 + 1)k+e’

Note that, if » is known (an unrealistic assumption), we
have E(D/(1 — pn(0))) = N, so that Ne(n) := D/(1 — py(0))
is an unbiased estimator of N (c stands for “conditional” for
reasons that will become clear). Furthermore,

pn(0)
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Analogous results hold for the unconditional or global MLE
of N for known 7. We compare the unknown-7 case to this
baseline below; for a full discussion, see Bunge and DiCiccio
(2002 unpublished manuscript).

In real applications, 7 is unknown and must be estimated
from the data along with N. Two maximum likelihood
methods are possible (Sanathanan, 1972, 1977; Bishop,
Fienberg, and Holland, 1975, Chapter 6):

(1) Unconditional MLE (Ny,#y): This MLE is obtained by
maximizing the likelihood L(N,n) globally with respect
to N and 7.

Conditional MLE (N¢,7c): First, 7ic is computed by
maximizing the conditional likelihood Lc(n); then N
is obtained by maximizing Ly(NV,7c) with respect to
N. Note that maximizing Lc(n) with respect to 7 is
equivalent to computing the MLE based on a sample
from a zero-truncated w-mixed Poisson distribution.
Given 7jc, the second maximization yields Nc = [D/(1 —
P4, (0))], where [a] here denotes the integer part of a.

k=0,1,....

= pa,ﬁ(k) =

()

These MLEs can also be viewed as empirical Bayes
procedures if m; is regarded as a prior for the species
abundances (cf., Efron and Thisted, 1976). Sanathanan (1972,
1977) derived the asymptotic behavior of the MLEs.

Fact 1. Under a set of technical regularity conditions (see
Sanathanan (1977) and the note below), as N — oo,

Ne — 1 almost surely

and
Ne—N
vN

1 - py(0)
= normal <O, <—pn )
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where V denotes the gradient operator and Info denotes the
Fisher information matrix for n with respect to the nonzero-
truncated mp-mixed Poisson. The same is true for Ny.

By comparing Fact 1 to the known-n case above, we see
how the variance of the estimate of N increases due to
the need to estimate 1. (We note that there is an error in
Sanathanan’s (1977) regularity conditions, but the matter
can be rectified; for details, see Bunge and DiCiccio (2002
unpublished manuscript). Here we assume that all required
conditions are met for the gamma-mixed Poisson.)

2.2 Estimation Based on Duplication and Coverage

Next we lay the groundwork for our proposed estimator. Let
6 = 1 — pp(0) — pn(1) denote the (unconditionally) expected
proportion of duplicates in the sample.

PROPOSITION 1: Under any mized Poisson process, the
expected frequencies satisfy

E(fo) = (07" —1) Y E(fx) — E(f1).
k=2
Proof.
E(fo) + E(f1) = N(1-6) = (67" - 1) (N6)
—1) > E(fi).

k=2

PROPOSITION 2: For the gamma-Poisson case, the
repeated fraction 6 can be consistently estimated by showing
that, as N — oo,

flzszk
k=1

Proof. Because X1, X2,...

E:nx._u

P

— 6.

6=1-

, Xy are 1.i.d., we have
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Computing the quantities on the right-hand side of (1) for the
gamma-Poisson case completes the proof.

Based on Proposxtxons 1 and 2, a consistent estimator of
E(fo) is (071 — 1)Z}_, fx — f1. We then add on the number
of observed species, D and propose the following estimator:

)Y A-a+D=Y % 0
k=2 k=2

The proposed estimator has an interesting interpretation:
Tk>2fr is the number of duplicated species and 6 denotes
a measure of the duplicated fraction. Note that the number
of singletons also plays an important role in estimating the
duplicated information. Consequently, our estimator actually
uses all frequencies because the estimator 6 uses all data.

To obtain a variance estimator, notice that N* can
be written as a function of the set of frequencies (fo,
fi, f2, ..., fn), which is approximately distributed as a
multinomial random vector with total frequency count N*
and cell probabilities (fo/N*, f1/ N*, ..., fa/N*). Therefore,
a variance estimator of the proposed estimator can be
obtained by using a standard asymptotic approach; ie., we
have

N* =

ON* ON*
Z 8fz af] Cov(fl)fj)

n n
—_—~ o
var (N*) ~

i

fi(1 = fi/N*) for i = j and ov(fi, f;) =

1j=1

where c/o\v(fz, fi) =
—fif/N* for i # j.

Based on the estimated variance, a confidence interval for
N can be constructed via a log transformation (Chao, 1987)
so that the lower confidence bound is always at least D. We
remark that 6 might take negative values so that N* becomes
negative. However, in our simulations, this occurred only in
cases of sparse data, for which both MLEs were usually not
computable either. A negative value of § implies that the
overlap measure is not high enough to produce a reliable
estimate. When such a case occurs, we suggest using the non-
parametric sample coverage estimator as a lower bound for
the number of species.

The proposed estimator has a close connection to the
sample coverage approach The coverage is defined as C :=

N AIX; > 0]/ 2 Y A;, which represents the fraction of

actual total abundance discovered in the process. A well-
known estimator (predictor) of coverage is C =1- f1/n (for
references, see Bunge and Fitzpatrick (1993)). This can be
justified heuristically in the mixed Poisson case as follows:
Suppose that all species have equal abundance, 1e A=A
(or & — 0o or v — 0 in the gamma case, where ~? is defined
below). Then

5 fl) (fl) _ Nae?
=1-E(=]|~
E(©) ( n 1= E(n) N
\ =1—a*=1—p“m.
Because e~ is the Poisson probability of zero in the equal-

abundance case, Ny = D/ ¢ is a nonparametric version of Ne
for this case. Chao and Lee (1992) adjusted this estimator for
unequal abundances by considering the coefficient of variation
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(CV) of the abundance sizes. Applying their approach for a
general mixed Poisson model, we have

N=D f 1
C ¢
where 72 is the CV of the distribution of the abundance sizes

and R is a remainder term. In particular, in the gamma-mixed
Poisson case, we can verify that

1y% +R, (3)
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Using these three convergence properties and the fact that
72 = 1/a, we have

R D/N N
R_DIN SN,
N C C
Therefore, the remainder term R can be ignored in the
estimation.
When sizes are heterogeneous, the CV is nonparametrically
related to N by
n
VRN k(k—1)fx/n® - 1. (4)

k=1

(Chao and Lee (1992) used n(n — 1) instead of n?, but the
difference is small.) Substituting (4) into (3), we obtain the
following estimating equation of N:

NoD o fu (N ME-DA
¢ ¢ n?
Chao and Lee used N; 2san m1t1a1 estimate of V in (4) to get
an initial estimate of 72, i.e., 'yl Ny e k(k— 1) fx/n?—1,
then substituted it into (3) to yield an estimate of N,
- D
No=—+ ﬂ
¢ C
If we regard Ny as a second estimate of IV, the same iteration
yields a new estimator of CV, f“y% = NoX¥_; k(k— 1) fir/n? -1,
and subsequently yields another estimate of N,

()

.. D fi. 2

N3 = o + C (6)
Except for a minor correction for the CV, the estimators
N and N3 correspond exactly to (2. 14) and (2.15) in Chao
and Lee (1992). The same iteration continues and the final
convergent estimator is exactly our proposed estimator N* in
(2). Hence, N* is a limiting form of the estimators proposed in
Chao and Lee (1992), and Ny and N3 represent lower bounds
for N*.
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2.3 Fitting the Gamma-Mized Poisson Model

A gamma-mixed Poisson distribution often cannot give a
good fit to data with many frequently observed species.
There are several possible approaches to modeling long-tailed
frequency data. One could take the abundance distribution
to be a mixture of (say) two gamma distributions with
different parameters; we have fit such models to real data,
but drawbacks include numerical difficulties and a lack of
theoretical justification for the model. Another approach
is to extend the gamma family to the generalized inverse
Gaussian (GIG) family as advocated by Sichel (1986). The
GIG-mixed Poisson family can fit long-tailed data well, but
numerical computation of MLEs for its three parameters
is not straightforward and variance estimation is difficult.
Recently, Norris and Pollock (1998) used a nonparametric or
unspecified mixing distribution, which in principle puts no
restriction on the length of the tail of the data.

Another method is to separate the population into two
parts (Chao, Ma, and Yang, 1993). Here we only attempt to
model the frequencies of the relatively rare species, and then
we add in the abundant species; i.e., we base the estimate of
unobserved species on (fi1, f2,. .., fr) for some cut-off value
7 and then complete the estimate by adding in the number
of species that are represented by more than 7 elements. The
problem then is to select the cut-off point 7. One can select
a fixed cut-off in advance: e.g., Chao et al. (1993) set 7 = 10
based on empirical experience. Alternatively, one can allow 7
to increase and look for a region in which the estimate of N
is stable, in which case, any 7 in the stability region will be
satisfactory; this sometimes occurs in real datasets. Finally,
one can allow 7 to increase until goodness-of-fit becomes
unacceptably low; this maximizes the use of the available data
while maintaining acceptable goodness-of-fit. We discuss the
effect of the cut-off point in the examples below.

Let the total number of abundant species in the sample
be Do = £, fr = £, I[X; > 7] and let the number of
observed rare species be Dr = Sf_, fr = EN, 1[0 < X; <

7). Hence, there are N — D, species in the subpopulatlon
counting unobserved as well as observed rare species. Then,
based on the data (fi,f2,...,fr) and (2), our proposed
estimator of N becomes

G : i
CES pe—
k=
2 f1 Zk2fk
k=1

A variance estimator and confidence interval can similarly be
constructed as discussed in Section 2.2 for the estimator N*.

(7)
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3. Real Data Examples

3.1 Butterfly Data

We first consider the well-known Malayan butterfly data due
to Fisher et al. (1943). A total of 620 species were found in this
study, but only the first 24 occupancy frequencies were given
by Fisher et al. (1943), so our cut-off point can be selected up
to 24. The data are reproduced in Table 1. This data set has








