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Abstract. An enormous number of measures based on different criteria have been
proposed to quantify evenness or unevenness among species relative abundances in an assem-
blage. However, a unified approach that can encompass most of the widely used indices is still
lacking. Here, we first present some basic requirements for an evenness measure. We then pro-
pose that unevenness among species relative abundances in an assemblage can be measured by
a normalized divergence between the vector of species relative abundances and the mean vec-
tor, where the mean vector represents the species relative abundances of a completely even
assemblage. Thus, evenness among species relative abundances is measured by the correspond-
ing normalized extent of closeness between these two vectors. We consider five divergence mea-
sures, leading to five classes of evenness indices. All our evenness measures are in terms of
diversity (Hill number) of order q > 0 (here q controls the weighting of species relative abun-
dances) and species richness (diversity of order q = 0). We propose quantifying evenness
through a continuous profile that depicts evenness as a function of diversity order q > 0. The
profiles can be easily and visually compared across multiple assemblages. Our evenness indices
satisfy all the requirements presented in this paper and encompass many widely used evenness
measures as special cases. When there are multiple assemblages, the abundance-based Jaccard-
and Sørensen-type dissimilarity measures (which are monotonic functions of beta diversity)
can be expressed as weighted averages of the individual species’ compositional unevenness
values; here, each individual species’ compositional unevenness is calculated based on that spe-
cies’ abundances among assemblages. The contribution of a species to each dissimilarity mea-
sure can be clearly disentangled and quantified in terms of this single species’ compositional
unevenness among assemblages. Thus, our framework links the concepts of evenness, diversity,
beta diversity, and similarity. Moreover, the framework can be readily extended to a phyloge-
netic version. A real data example is used to illustrate our approach. We also discuss some cri-
teria and other measures that were previously proposed in the literature.

Key words: beta diversity; dissimilarity; divergence; diversity; evenness; Hill numbers; phylogenetic
diversity; principle of transfer; similarity; unevenness.

INTRODUCTION

Until fairly recently, how to quantify biodiversity was
one of the most controversial issues in ecology (Magur-
ran and McGill 2011). Surprisingly, since an Ecology
forum (Ellison 2010 and the papers following it), a con-
sensus seems to have emerged about the use of Hill num-
bers, that is, the effective number of species (Hill 1973),
as the diversity measure of choice for quantifying species
diversity and decomposition. Hill numbers, parameter-
ized by a diversity order q (where q controls the weights
of species relative abundances), encompass the three
most useful diversity measures: species richness (diver-
sity of order q = 0), Shannon diversity (q = 1, i.e., the

exponent of Shannon entropy), and Simpson diversity
(q = 2, i.e., the inverse of the Simpson concentration
index); see Hill (1973) and Chao et al. (2014) for
reviews.
Compared to diversity, quantifying evenness or

unevenness among species relative abundances is an even
more complicated and extensively discussed issue (Pielou
1966, Alatalo 1981, Routledge 1983, Smith and Wilson
1996, Gosselin 2001, 2006, Ricotta 2003, Olszewski
2004, Jost 2010, Tuomisto 2012, Kv�alseth 2015, among
others). A number of authors (Routledge 1983, Smith
and Wilson 1996, Kv�alseth 2015) discussed necessary
properties for an evenness measure. Researchers from
different perspectives and under different criteria have
developed a wider range of (un)evenness measures than
diversity indices. The list of evenness measures seems
endless, reflecting that our concept of evenness is not
very clear and also that disagreements exist about the
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requirements an evenness measure should satisfy.
Indeed, before the possibility of similarly reaching a con-
sensus can be considered to be more than a distant goal,
it is necessary to formulate a unified methodology/
approach that can encompass most useful evenness
measures.
In this paper, we propose an intuitive and unified

mathematical framework to obtain evenness measures.
In our framework, unevenness among species relative
abundances is measured by a normalized divergence
between the vector of species relative abundances and
the mean vector, where the mean vector represents the
species relative abundances of a completely even assem-
blage with the same number of species. Thus, evenness
among species relative abundances is measured by the
corresponding normalized extent of closeness between
these two vectors.
Here, we first present our perspective on some basic

requirements for an evenness measure. Then we con-
sider five divergence measures, leading to five classes
of evenness indices. All divergence and evenness mea-
sures are in terms of (relative) abundance-based Hill
numbers (i.e., q > 0) and species richness (q = 0),
revealing explicitly the relation between evenness and
diversity. Our measures possess all of the basic require-
ments presented later in this paper and encompass
many previous evenness indices as special cases. When
multiple assemblages are considered, we apply our
measures to evaluate each species’ compositional even-
ness, that is, evenness in this single species’ relative
abundances, among assemblages, calculated for each
species, individually. Then the abundance-based Jac-
card- and Sørensen-type dissimilarity measures (which
are monotonic functions of beta diversity) can be
expressed as weighted averages of the individual spe-
cies’ compositional unevenness values. Thus, our
framework links among the concepts of diversity, even-
ness, beta diversity and similarity. The contribution of
a species to the Jaccard- and Sørensen-type dissimilar-
ity measures can be explicitly disentangled and quanti-
fied in terms of this single species’ compositional
unevenness among multiple assemblage.
In traditional taxonomic diversity analysis, all species

are considered to be equally distinct from one another.
However, in an evolutionary context, species differences
can be based directly on their evolutionary relationships
in the form of phylogenetic trees. Species that are closely
related are generally less distinct in important ecological
characteristics than are distantly related species. A vast
number of phylogenetic diversity metrics and related
(dis)similarity measures have been proposed; see Chao
et al. (2014) for a review. When all species (as tip nodes)
in a focal assemblage are connected by a rooted ultra-
metric phylogenetic tree, our framework can be extended
to a phylogenetic version. Thus, the contribution of each
species/node of the phylogenetic tree to a phylogenetic
dissimilarity measure can also be assessed. A real data
example is used for illustrating the proposed evenness

profiles and assessing the contribution of each species/
node to taxonomic and phylogenetic dissimilarity
measures.

BASIC REQUIREMENTS FOR AN EVENNESS MEASURE

The main reason for the development of the broad
spectrum of evenness measures seen today is that differ-
ent researchers require different criteria. Our proposed
requirements for an evenness measure are systematically
given separately for three cases: (1) Species richness is
fixed but abundance-based diversity varies. (2) Species
richness varies but abundance-based diversity is almost
fixed. (3) Species richness and/or abundance-based
diversity are varying.

Basic requirements for an evenness measure when species
richness is fixed

Our proposed criteria when species richness is fixed
are the same as those for the concept of diversity
because diversity is based on the evenness principle.
That is, when species richness is fixed, the more even
the species abundances, the higher the diversity. Here,
we first present the mathematical formulas of species
diversity, which are based on species relative abun-
dances. Assuming there are S species in an assemblage
with species relative abundance vector p ¼ ðp1; p2;
. . .; pSÞ, taxonomic/species diversity (Hill number) of
order q is defined as

qD ¼
XS
i¼1

pqi

 !1=ð1�qÞ
; q� 0; q 6¼ 1. (1a)

For q = 1, we have

1D ¼ lim
q!1

qD ¼ exp �
XS
i¼1

pi log pi

 !
. (1b)

When species richness S is fixed, evenness of p, E(p),
should possess the same properties as an abundance-
based diversity measure (Taillie 1979). We require two
unequivocal shared properties:

Requirement 1a—When species richness is fixed, the
fundamental and most essential property required
for an evenness measure is the principle of transfer,
which states that when an amount of abundance is
transferred from a relatively more abundant species
to a relatively less abundant species, evenness
should increase. Specifically, assume that species i is
more abundant than species j (i.e., pi > pj > 0). If
an amount h, 0 < h < pi � pj, is transferred from
species i to species j, then evenness increases.

Requirement 1b—E(p) should be continuous and
symmetric with respect to p ¼ ðp1; p2; . . .; pSÞ. Here,
symmetric means permutation-invariant.
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The principle of transfer is equivalent to strict Schur-
concavity of E(p) with respect to p (Marshall et al. 2011).
Intuitively, Schur-concavity of evenness means that even-
ness increases as dispersion of abundances decreases,
whereby “dispersion” of abundances is defined by the
concept of majorization; see Appendix S1: Section S1 for
mathematical details on majorization, Schur-concavity,
and the related notion of the Lorenz curve/ordering.
Given there are S species, Requirement 1a also implies

that any evenness measure attains a maximum value for
a completely even assemblage with species relative abun-
dance vector p ¼ �p ¼ ð1=S; 1=S; . . .; 1=SÞ (i.e., the mean
vector); the most uneven assemblage should consist of
one superdominant species (i.e., a species whose relative
abundance is tending unity), and (S � 1) species of van-
ishingly small abundances. For notational and deriva-
tional convenience, we simply regard a vanishingly small
abundance as “zero” abundance (or the abundance of a
present but undetected species) and denote the most
uneven vector with S elements as p0 = (1, 0+, . . ., 0+).

Basic requirement for an evenness measure when species
richness is varying but diversity of order q > 0 is almost

fixed

Requirement 2—When a vanishingly rare species is
added to an assemblage so that the diversity of
order q > 0 barely changes, evenness should not
increase.

This property corresponds to Routledge’s (1983) sec-
ond requirement (R2). Like Smith and Wilson (1996),
Jost (2010), and Kv�alseth (2015), here we do not require
that E(p) is continuous with respect to species richness.

Basic requirements for an evenness measure when richness
and/or abundance-based diversity are varying

Requirement 3a—“Independence” or unrelatedness
criterion: The range of values that an evenness
measure can take should be a fixed interval,
regardless of the values of species richness (q = 0)
and abundance-based diversity (q > 0).

Requirement 3b—Scale invariance: Any evenness
measure should not be affected by the units used.
In particular, evenness for species raw abundances
and relative abundances should be the same.

Although the criterion of “independence” on species
richness has been adopted by several researchers, vary-
ing interpretations have been applied to it (Smith and
Wilson 1996, Gosselin 2006, Kv�alseth 2015); see Dis-
cussion for details. The meaning of the independence
of two measures was the subject of a contentious
debate in an Ecology Forum; see Ellison (2010) and
papers following it. Chao et al. (2012) suggested the

adoption of the term “unrelatedness” to replace “inde-
pendence” as a way to avoid confusion. Chao and
Chiu (2016) gave two intuitive criteria to assure the
“independence” or unrelatedness of two measures.
These two criteria are: (1) The minimum value that one
measure can take should be a fixed constant, and (2)
the maximum value that a measure can take should
also be a fixed constant, regardless of the values of the
other measure. Based on their criteria, Requirement 3a
means that both the minimum and maximum values
that an evenness measure can take should be fixed con-
stants, regardless of the values of diversity of any order
q ≥ 0. By convention, we set the minimum value = 0
and maximum value = 1. Then it follows from
Requirement 1a that when p ¼ �p, E(p) attains the max-
imum value of 1, and when p = p0, E(p) approaches
the minimum value of 0. The unrelatedness require-
ment assures that the same magnitude of evenness
quantifies the same degree of equitability, even when
the assemblages differ in richness or diversity. See Dis-
cussion for examples.

OUR FRAMEWORK LEADS TO FIVE CLASSES OF EVENNESS

INDICES

Kv�alseth (2015) introduced the value-validity prop-
erty, allowing an evenness measure to be applied not
only to rank different assemblages but also to rank the
difference and proportional difference between any two
pairs of assemblages; see Eqs. 7a–c of Kv�alseth (2015).
This property entails that an evenness measure must sat-
isfy the following two requirements:

1. For an assemblage with S species, an evenness mea-
sure is expressed as the one-complement of a normal-
ized distance for some distance metric d between the
vector of species relative abundances p and the mean
vector �p, as shown in the following form:

EðpÞ ¼ 1� dðp; �pÞ
dðp0; �pÞ . ð2Þ

2. If a vector is expressed as a convex combination of �p
and p0, that is, p ¼ k�pþ ð1� kÞp0, then the evenness
of this vector p must be k.

Kv�alseth (2015) applied the Minkowski family of dis-
tances of order a > 0; that is, daðp; �pÞ ¼ ðPS

i¼1 jpi
�ð1=SÞjaÞ1=a. When a = 1, the resulting evenness mea-
sure reduces to the Bulla (1994) measure; when a = 2
(Euclidean distance), it reduces to the measure proposed
by F. M. Williams (unpublished data; see Kv�alseth
2015), which is a transformation of the coefficient of
variation among species relative abundances. Kv�alseth
(2015) indicated that Bulla’s evenness measure does not
satisfy the principle of transfer, and hence advocated
the use of Williams’ measure. However, Williams’ mea-
sure is based on the Euclidean distance; it thus
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disproportionally favors dominant species and mainly
quantifies the evenness among dominant species. In
Kv�alseth’s approach, nearly all of the widely used even-
ness measures are excluded, mainly because there are no
proper distances that can be used in Eq. 2 to obtain
those measures. For Kv�alseth’s second requirement,
most previous evenness measures for p ¼ k�pþ ð1� kÞp0
are not equal to k, but to an increasing function of k.
Because most ecological applications require only

ranking/comparing evenness across assemblages, we
were thus motivated to develop a unified approach that
can (1) encompass most useful evenness measures, (2)
consider any diversity order q > 0 to obtain evenness
profiles, and (3) always lead to measures that satisfy the
essential principle of transfers, which then implies the
evenness of the vector p ¼ k�pþ ð1� kÞp0 to be an
increasing function of k.
Our unified approach is to replace the distance in

Eq. 2 by a divergence measure in terms of species rich-
ness and abundance-based diversity (q > 0). Unlike a
distance metric, a divergence measure does not require
symmetry nor the triangle inequality. Here, we consider
the qth-power of each species’ relative abundance and
define the qth-power vector pq ¼ ðpq1; pq2; . . .; pqSÞ. Let
�pq ¼ ðð1=SÞq; . . .; ð1=SÞqÞ be the corresponding qth-
power mean vector. We define the qth order divergence,
q > 0, between the two vectors pq and �pq for a proper
function h as

Dhðpq; �pqÞ ¼ hðpq1; pq2; . . .; pqSÞ
� hðð1=SÞq; ð1=SÞq; . . .; ð1=SÞqÞ. (3a)

Any legitimate divergence measure should satisfy two
conditions: (1) the divergence must be strictly Schur-
convex with respect to p. This condition implies that the
divergence attains a minimum of 0 if and only if p ¼ �p,
that is, if and only if all abundances are even; and (2) the
divergence approaches a maximum of 1 if and only if
p ¼ p0. Then for any q > 0 our unified class of uneven-
ness measures is expressed as a normalized divergence
measure; that is, Dhðpq; �pqÞ=Dhðp0; �pqÞ, where the denom-
inator Dhðp0; �pqÞ is a normalizing constant such that all
our (un)evenness values are between 0 and 1. The corre-
sponding evenness measure is

qEhðpÞ ¼ 1� Dhðpq; �pqÞ
Dhðp0; �pqÞ ; q[ 0. (3b)

We propose quantifying evenness by using a con-
tinuous profile that depicts qEhðpÞ as a function of
diversity order q > 0. This profile-based evenness
ordering is a partial ordering. We mainly focus on
the interval 0 < q ≤ 2 because for large values of q,
dominant species are increasingly overweighted.
Therefore, the calculation of parametric evenness
with values of q > 2 is recommended only if we are
interested in the evenness of the abundances of dom-
inant species.

We consider five classes of divergence measures. Below
we only present the first two divergences because the
resulting evenness measures can be linked to beta diver-
sity and (dis)similarity indices. We first consider the
function h1ðxq1; xq2; . . .; xqSÞ ¼

PS
i¼1 x

q
i =ðq� 1Þ in Eq. 3a

for q > 0, q 6¼ 1. Then the class of divergence measures
becomes

D1ðpq; �pqÞ ¼ 1
q� 1

XS
i¼1

pqi � S1�q

 !

¼ 1
q� 1

ðqDÞ1�q � S1�q
h i

� 0.

(4a)

When q tends to 1, this divergence tends to the Kull-
back–Leibler divergence between p ¼ ðp1; p2; . . .; pSÞ
and the mean vector �p ¼ ð1=S; 1=S; . . .; 1=SÞ; see
Appendix S1: Section S2. It follows from Eq. 3b that the
evenness measure of a general order q is

qE1ðpÞ ¼ 1�PS
i¼1 p

q
i

1� S1�q
¼ 1� ðqDÞ1�q

1� S1�q
; q[ 0. (4b)

This class of evenness measures of order q was pro-
posed by Mendes et al. (2008). For q tending to 1, it
reduces to Pielou’s J 0 (Pielou 1966). For q = 2, it reduces
to the Smith and Wilson (1996) measure, which is a nor-
malized form of the steepest slope of a species accumula-
tion curve (Olszewski 2004). In Appendix S1:
Section S2, we prove that our first class of unevenness
measures of any order q represents the magnitude or
absolute value of the normalized slope connecting two
points with diversity orders 0 and q in the Tsallis entropy
profile.
Consider another function h2ðxq1; xq2; . . .; xqSÞ ¼

1=½ð1� qÞPS
i¼1 x

q
i �, q > 0, q 6¼ 1 in Eq. 3a. Then the

divergence measure becomes

D2ðpq; �pqÞ ¼ 1
1� q

1PS
i¼1 p

q
i

� Sq�1

 !

¼ 1
1� q

ðqDÞq�1 � Sq�1
h i

� 0.

(5a)

When q tends to 1, this divergence tends to the Kull-
back–Leibler divergence between p ¼ ðp1; p2; . . .; pSÞ and
the mean vector �p ¼ ð1=S; 1=S; . . .; 1=SÞ. It follows from
Eq. 3b that the evenness measure of a general order q is

qE2ðpÞ ¼ 1� 1=
PS

i¼1 p
q
i

1� Sq�1 ¼ 1� ðqDÞq�1

1� Sq�1 ; q[ 0. (5b)

To our knowledge, this evenness measure of general
order q is new. For q tending to 1, it reduces to Pielou’s
J 0; for q = 2, it reduces to the measure proposed by
Kv�alseth (1991).
The other three classes of divergence measures and

their corresponding evenness measures are listed in
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Table 1, where the Minkowski family of distances of
order a > 0 considered by Kv�alseth (2015) is also
included. The resulting evenness measures include many
commonly used evenness metrics. We can also demon-
strate that the third and fifth classes of evenness mea-
sures are, respectively, the normalized absolute slopes of
Hill-number and R�enyi-entropy profiles.

PROPERTIES

All our proposed five classes of evenness measures
(Table 1) satisfy the basic required properties stated

previously. It is readily seen that our proposed measures
satisfy Requirements 1a, 1b, and 3b (i.e., properties of
Hill numbers) because our measures are functions of
Hill numbers. All the proposed evenness measures attain
the fixed maximum value of unity when p ¼ �p; all mea-
sures approach the fixed minimum value of 0 when
p ¼ p0, fulfilling Requirement 3a. Note that when diver-
sity qD > 1 and almost fixed as S increases, the five
classes of evenness measures are monotonically decreas-
ing function of S. Consequently, when an additional
vanishingly rare species is added so that diversity
remains almost the same, all the five measures decrease,

TABLE 1. Five proposed classes (Classes 1–5) of divergence measures of order q > 0 and the corresponding evenness measures in
[0, 1] and their special cases.

Class of divergence/distance Evenness measure References and remarks

(1) D1ðpq; �pqÞ

¼ 1
q� 1

XS
i¼1

pqi � S1�q

 !

¼ 1
q� 1

ðqDÞ1�q � S1�q
h i

� 0

qE1ðpÞ ¼ 1�PS
i¼1 p

q
i

1� S1�q

¼ 1� ðqDÞ1�q

1� S1�q

General q: Mendes et al. (2008)
q = 1: Pielou (1966)
q = 2: Smith and Wilson (1996)
Unevenness: normalized slope of
Tsallis-entropy profile

(2) D2ðpq; �pqÞ

¼ 1
1� q

1PS
i¼1 p

q
i

� Sq�1

 !

¼ 1
1� q

ðqDÞq�1 � Sq�1
h i

� 0

qE2ðpÞ ¼ 1� 1=
PS

i¼1 p
q
i

1� Sq�1

¼ 1� ðqDÞq�1

1� Sq�1

General q: New
q = 1: Pielou (1966)
q = 2: Kv�alseth (1991)

(3) D3ðpq; �pqÞ
¼ S �

XS

i¼1
pqi

� �1=ð1�qÞ

¼ S � qD� 0

qE3ðpÞ ¼
PS

i¼1 p
q
i

� �1=ð1�qÞ
�1

S � 1

¼
qD� 1
S � 1

General q: Jost (2010)
q = 1: Heip (1974)
q = 2: Kv�alseth (1991)
Unevenness: normalized slope
of Hill-number profile

(4) D4ðpq; �pqÞ

¼
XS

i¼1
pqi

� �1=ðq�1Þ
�ð1=SÞ

¼ ð1=qDÞ � ð1=SÞ� 0

qE4ðpÞ ¼
1� PS

i¼1 p
q
i

� �1=ðq�1Þ

1� ð1=SÞ
¼ 1� ð1=qDÞ

1� ð1=SÞ

General q: New
q = 1: new
q = 2: Smith and Wilson (1996)

(5) D5ðpq; �pqÞ

¼ � log
XS

i¼1
pqi

� �1=ð1�qÞ
þ logS

¼ log
S
qD

� 0

qE5ðpÞ ¼
log

PS
i¼1 p

q
i

� �1=ð1�qÞ

logS

¼ log qD
logS

General q: Jost (2010)
q = 1: Pielou (1966)
q = 2: Smith and Wilson (1996)
Unevenness: Normalized
slope of R�enyi-entropy profile

(6) Minkowski distances
daðp; �pÞ

¼
XS

i¼1
jpi � ð1=SÞja

� �1=a aE6ðpÞ ¼ 1�
PS

i¼1 jpi � ð1=SÞja
½1� ð1=SÞ�a þ ðS � 1ÞS�a

" #1=a
General q: Kv�alseth (2015)
q = 1: Bulla (1994)
q = 2: F. M. Williams
(unpublished data)

Notes: Class 6 represents the Minkowski family of distances daðp; �pÞ of order a considered by Kv�alseth (2015). All slopes refer to
the magnitude or absolute value of the slope connecting two points with diversity orders 0 and q in a specified profile.
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fulfilling Requirement 2. In the special case of qD = 1
(i.e., p ¼ p0), all evenness measures approach the abso-
lute minimum value of 0 for any value of S, meaning
that evenness does not increase and thus that Require-
ment 2 is also fulfilled.
Requirement 1a implies that the proposed five classes

of evenness measure also possess the following
additional properties:

P1: Evenness decreases when the abundance of the
rarest species is slightly reduced. This corresponds
to Routledge’s (1983) first requirement (R1).

P2: Lorenz ordering is preserved when species richness
is fixed across assemblages. That is, when two
assemblages have the same number of species, if the
Lorenz curve of Assemblage I is nowhere below the
curve of Assemblage II, then the evenness of
Assemblage I based on our measures must not be
lower than that of Assemblage II. See Discussion
for comparison of our framework with the Lorenz-
ordering approach.

P3: If a relative abundance vector is expressed as a
convex combination of �p and p0, that is,
pk ¼ k�pþ ð1� kÞp0, then the evenness of pk is a
monotonically increasing function of k. In other
words, Kv�alseth’s (2015) stringent requirement (i.e.,
evenness for pk must be k) is relaxed to be an
increasing function of k. For example, the evenness
of pk of the first class of measures in Table 1 turns
out to be kð2� kÞ for q = 2. See Appendix S1:
Section S3 for derivation and the corresponding
formula for Pielou’s J 0.

In addition, our proposed five classes of evenness
measures satisfy the following property:

P4: Replication monotonicity. Assume an assemblage
consists of K replicates of the original assemblage
(referred to as a K-replicated assemblage). Each
replicate has the same number of species and the
same set of species abundances as the original one,
but with completely different, unique species in
each replicate. Then the evenness of the K-
replicated assemblage is an increasing function of K
if the original assemblage is not completely even;
replication invariance is only valid for a completely
even case.

This monotonicity property represents a drastic differ-
ence between our theory and most previous approaches
in which replication invariance is an essential require-
ment (Hill 1973, Taillie 1979, Smith and Wilson 1996,
Gosselin 2001, 2006, Tuomisto 2012). For examples, our
replication monotonicity implies that the evenness val-
ues for three hypothetical assemblages with abundances
(1, 99), (1, 1, 99, 99) and (1, 1, 1, 99, 99, 99) has the fol-
lowing rank: (1, 99) < (1, 1, 99, 99) < (1, 1, 1, 99, 99,
99), whereas the replication invariance approach would

conclude that the three assemblages have the same
degrees of evenness.
The mathematical proof of replication monotonicity

for our measures is shown in Appendix S1: Section S3.
Here, we provide an intuitive justification: Consider a
maximally uneven two-species assemblage in which one
species has a vanishingly low abundance, resulting in an
evenness near the minimum value of 0. When the assem-
blage is replicated, if the replication invariance is
required, then the evenness of the resulting four-species
assemblage must also be near 0. However, note that
there are two very abundant species in this four-species
assemblage; its evenness should be greater than 0 to
some extent because the species relative abundance vec-
tor of the four-species assemblage is more even than an
assemblage with one super-dominant species and three
vanishingly rare species. This example also reveals,
under the requirement of replication invariance, that the
minimum value an evenness measure can take is neces-
sarily dependent on species richness, violating Require-
ment 3a, which requires an absolute fixed minimum
value for any species richness.

LINKING UNEVENNESS AND BETA/DISSIMILARITY FOR

MULTIPLE ASSEMBLAGES

Assume that there are N ≥ 2 assemblages, with S spe-
cies indexed by 1, 2,. . ., S in the pooled assemblage. Let
Z = [zik] ≥ 0 be an S 9 N abundance/composition
matrix:

Z ¼
z11 z12 � � � z1N
z21 � � � � �
� � � � � �
zS1 zS2 � � � zSN

2
664

3
775. (6a)

We refer to zik as the species abundance of the ith species
in the kth assemblage. The abundance zik can be any
measure of species importance such as a species-
incidence (presence-absence) record, species absolute
abundance (i.e., the number of individuals), within-
assemblage relative abundance, density, biomass, spatial
coverage of corals, or basal area of plants. Let
ziþ ¼PN

k¼1 zik be the total abundance of the ith species
in the pooled assemblage, and �ziþ ¼ ziþ=N be the aver-
age abundance of the ith species per assemblage. Also,
define zþþ ¼PN

k¼1

PS
i¼1 zik as the total abundance/size

of the matrix Z.
The assessment of beta diversity and (dis)similarity in

species abundance distributions among a set of assem-
blages in a geographical area, over a time period, or
along an environmental gradient subject is an active
research focus in ecology. Chao and Chiu (2016) defined
beta diversity as a ratio of gamma and alpha; that is,
qDb ¼ qDc=

qDa, where qDc ¼ fPS
i¼1ðziþ=zþþÞqg1=ð1�qÞ

denotes the gamma diversity (i.e., the effective number
of species in the pooled assemblage), and qDa ¼ ð1=NÞ
fPS

i¼1

PN
k¼1ðzik=zþþÞqg1=ð1�qÞ denotes the alpha diversity
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(i.e., the effective number of species per assemblage); see
their paper for interpretations and the sense of “effec-
tive.” They further proved for any diversity order q ≥ 0,
that two major approaches to beta diversity (variance
framework and diversity decomposition) lead to the same
classes of (dis)similarity measures including the abun-
dance-based Jaccard- and Sørensen-type nonoverlap or
dissimilarity measures.
Note that the conventional evenness measures, as dis-

cussed in previous sections, are evaluated among S spe-
cies relative abundances in a single assemblage. For
multiple assemblages, however, we compute each single
species compositional (un)evenness among the N assem-
blages. That is, for species i, we evaluate evenness for the
N-element vector pðiÞ ¼ fzi1=ziþ; zi2=ziþ; . . .; ziN=ziþg,
that is, the species relative abundances among the N
assemblages. For example, the evenness measures
derived in Eqs. 4b and 5b, respectively, become:

qE1ðpðiÞÞ ¼ 1�PN
k¼1ðzik=ziþÞq

1�N1�q
;

qE2ðpðiÞÞ ¼ 1� 1=½PN
k¼1ðzik=ziþÞq�

1�Nq�1 .

(6b)

In the following we show how to link the first class of
unevenness measures to the Jaccard-type dissimilarity
measures, thus allowing the contribution of each species
to be explicitly evaluated. The derivations for the corre-
sponding link between the second class of evenness mea-
sures and the Sørensen-type dissimilarity are parallel
and given in Appendix S1: Section S4.

Linking species compositional unevenness to Jaccard-type
dissimilarity measures

To establish the link, species are assumed to have dif-
ferent impacts or “weights” based on their abundances.
Let the qth order weight of species i be qw1i ¼
zqiþ=

PS
j¼1 z

q
jþ, i = 1, 2, . . ., S. Then the weighted average

of individual species compositional unevenness values
based on the first class of unevenness measure
1� qE1ðpðiÞÞ leads to the abundance-based Jaccard-type
dissimilarity measure 1 � UqN (Chao and Chiu 2016:
Eq. 12a). That is, we have

XS
i¼1

ðqw1iÞ½1� qE1ðpðiÞÞ�

¼
XS
i¼1

zqiþPS
j¼1 z

q
jþ

PN
k¼1ðzik=ziþÞq �N1�q

h i
1�N1�q

(7a)

¼
PS

i¼1

PN
k¼1ðzqik � �zqiþÞ

ðNq �NÞPS
j¼1 �z

q
jþ

¼ 1�UqN . (7b)

Eqs. 7a, b link the first class of unevenness measure
to the Jaccard-type dissimilarity measures for any q > 0,

because the unevenness measures are only meaningful
for q > 0. However, the Jaccard-type dissimilarity mea-
sure 1 � UqN in Eq. 7b is actually also valid for q = 0
(i.e., only species presence/absence data are counted).
Chao and Chiu (2016) showed that the zero-order mea-
sure 1 � U0N reduces to the classic N-assemblage rich-
ness-based Jaccard dissimilarity index. Thus, this class
of measures 1 � UqN generalizes the classic Jaccard
index to incorporate species abundances (if q > 0).
When the data matrix [zik] represents within-assemblage
relative abundances, this measure for q = 1 and 2
reduces,, respectively, to the traditional N-assemblage
entropy-based heterogeneity (Horn 1966) and regional
species-dissimilarity (Chiu et al. 2014) measures.
This class of dissimilarity measures for all q ≥ 0 is a

complementarity measure that quantifies the effective
proportion of nonshared species in the pooled assem-
blage (Chao and Chiu 2016:922). They also showed that
the Jaccard-type dissimilarity measure of order q is a
monotonic transformation of multiplicative beta diver-
sity qDb; that is, 1�UqN ¼ ½ðqDbÞq�1 � 1�=ðNq�1 � 1Þ
for q 6¼ 1, and 1�U1N ¼ logð1DbÞ= logN. Therefore,
our approach also links beta diversity and the first class
of unevenness measures:

qDb ¼ 1þ ðNq�1 � 1Þ
XS
i¼1

ðqw1iÞ½1� qE1ðpðiÞÞ�
 !1=ðq�1Þ

;

q[ 0; q 6¼ 1.

Note that when q tends to 1, the weight becomes the
proportion of a species’ total abundance; that is,
1w1i ¼ ziþ=

PS
j¼1 zjþ ¼ ziþ=zþþ; the unevenness measure

1� qE1ðpðiÞÞ tends to Pielou’s (1966) unevenness mea-
sure based on pðiÞ ¼ fzi1=ziþ; zi2=ziþ; . . .; ziN=ziþg. This
special case was first discussed in Ricotta (2017), who
established a bridge between Pielou’s measure and the
Horn (1966) heterogeneity index (i.e., 1 � U1N). Specifi-
cally, we have

lim
q!1

XS
i¼1

ðqw1iÞ½1� qE1ðpðiÞÞ�

¼
XS
i¼1

ziþ
zþþ

1�
PN

k¼1ð�zik=ziþÞ logðzik=ziþÞ�
logN

" #

¼ 1
zþþ logN

XS
i¼1

XN
k¼1

zik log
zik
�ziþ

¼ 1�U1N : ð7cÞ

This leads to

1Db ¼ exp ðlogNÞ
XS
i¼1

ð1w1iÞ½1� 1E1ðpðiÞÞ�
 !

. (7d)

Based on Eqs. 7a–c, the contribution of each species
to the Jaccard-type dissimilarity measure can be disen-
tangled and quantified. For q > 0, the contribution of
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species i is simply ðqw1iÞ½1� qE1ðpðiÞÞ�, that is, the pro-
duct of the weight and the first class of unevenness mea-
sures for pðiÞ. Note the contribution of any species is 0 if
qE1ðpðiÞÞ ¼ 1; species i has an even abundance among
the N assemblages, whereas the contribution is positive
if qE1ðpðiÞÞ\1; that is, the abundances of species i are
not evenly distributed among the N assemblages. For
q = 1, the contribution of species i reduces to the pro-
duct of the species weight and Pielou’s unevenness mea-
sure based on p(i), and it can be simplified to
ðzþþ logNÞ�1PN

k¼1 zik logðzik=�ziþÞ.
For q = 0, if we define 00 � 0 so that any absent spe-

cies does not contribute to the computation and define
Yi as the number of assemblages in which species i is
detected, then the contribution of species i can be
obtained from Eq. 7b and expressed as

PN
k¼1ðz0ik � �z0iþÞ

ðNq �NÞPS
j¼1 �z

0
jþ

¼ 1
S
ðN � YiÞ
ðN � 1Þ ;

which is positive if species i is not detected in at least one
of the N assemblages, and is 0 if species i is detected in
all assemblages.

PHYLOGENETIC BETA/DISSIMILARITY VIAUNEVENNESS

MEASURES

Our link between species compositional unevenness
measures and taxonomic dissimilarity indices can be
readily generalized to a phylogenetic version. Here, we
only highlight the major extension for the framework.
Assume that there are N assemblages and S species
(as tip nodes) connected by a rooted ultrametric phy-
logenetic tree. We assume all phylogenetic diversity
measures are computed from a given fixed time refer-
ence point that is ancestral to all taxa considered in
the study. The age of the root is typically chosen as a
reference point.
For a given reference point, assume that the tree

depth is T and there are B branches/nodes in
the pooled tree, B ≥ S. The major difference between
the taxonomic and phylogenetic approaches lies in the
expansion of a set of S species to a set of B nodes/
branches. Let Li denote the length of the ith branch.
We extend the definition of zik in the taxonomic case
to include any node i by defining zik (node/branch
abundance) for i = 1, 2, . . ., B as the total abundance
descending from node/branch i. See Appendix S2:
Fig. S1 for a simple illustrative example (N = 2, S = 5,
B = 8).
Chiu et al. (2014) extended the taxonomic Jaccard-

and Sørensen-type dissimilarity measures to their
phylogenetic versions. We can similarly link node com-
positional unevenness to the two types of phylogenetic
dissimilarity indices. Here, a node compositional uneven-
ness measure is calculated for single-node relative abun-
dances among the N assemblages. That is, for the ith

node, i = 1, 2, . . ., B, the node compositional unevenness
is quantified as a normalized divergence between the
node relative abundance vector aðiÞ ¼ fzi1=ziþ; zi2=
ziþ; . . .; ziN=ziþg and the mean vector �pðNÞ ¼ ð1=N;
1=N; . . .; 1=NÞ, where zi+ denotes the total abundance of
the ith node. Because the extension and derivation are
generally parallel, all details are provided in
Appendix S2.

AWORKED EXAMPLE

The data considered here were collected by Caccianiga
et al. (2006) and analyzed in Ricotta et al. (2016, 2018).
The original data set, which can be found in Ricotta
et al. (2016: Appendix S2), contains abundances for a
total of 45 Alpine species sampled in 59 vegetation plots
each of approximately 25 m2 along a primary succession
on the Rutor glacier (northern Italy). Based on the age
of the glacial deposits, plots were assigned to three suc-
cessional stages: early succession (17 plots), midsucces-
sion (32 plots), and late succession (10 plots); see the
mentioned papers for details.
We first compute species relative abundances within

each plot, and then average these relative abundances
across the plots within each stage. This entails that all
plots have equal weights in obtaining the species relative
abundance data. Our analyses were based on the three
sets of species relative abundances given in Fig. 1. The
phylogenetic tree of the 45 species (Fig. 1) was taken
from Ricotta et al. (2015, their Appendix A). The age of
the root for these 45 species is approximately 147 million
years (Myr).
In Fig. 2, we plot the evenness profiles as a function

of order q (0 < q ≤ 2) based on the six classes of mea-
sures in Table 1 (denoted as E1–E6 in Fig. 2) for the
three successional stages. Detailed numerical results are
provided in Appendix S3: Table S1. In Fig. 3, we show
the contribution of each species to the Jaccard-type tax-
onomic dissimilarity index for three diversity orders
(q = 0, 1, and 2). The species contributions to the Søren-
sen-type index (shown in Appendix S3: Fig. S1) are
nearly proportional to those of the Jaccard-type index
(i.e., the pattern is the same notwithstanding some dif-
ferences in magnitude). In Fig. 4, we present the contri-
bution of each species/node in the phylogenetic tree to
the Jaccard-type phylogenetic dissimilarity; here, the cor-
responding branch length is taken into account in the
contribution. As with taxonomic dissimilarity, the spe-
cies-contribution pattern for the Sørensen-type phyloge-
netic dissimilarity is nearly identical to that for the
Jaccard-type phylogenetic index; see Appendix S3:
Fig. S2. All data used in this example and the R code
“Evenness” for computing our proposed evenness
indices and making all relevant plots are provided (see
Data Availability).
In good agreement with the results of Ricotta et al.

(2016, 2018), a general tendency toward an increase in
evenness values from the early successional stages to the
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late-successional stages is observed. All evenness profiles
in Fig. 2 show that the early-successional and midsuc-
cessional stages have approximately the same degree of
evenness among species relative abundances. For q = 1,
with the exception of E4, which shows the three stages
have almost the same levels of evenness, each of the
other five measures reveal that the species relative

abundances are more even in the late-successional stage
than in any of the other two stages. For dominant species
(q = 2), E2, E3, and E5 also reveal that the late-succes-
sional stage is more even, whereas the other three mea-
sures show that the three stages have close evenness
levels. The lower evenness values in the initial succes-
sional stages are most likely associated with the random
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FIG. 1. The phylogenetic tree of 45 Alpine species and the species relative abundances in three succession stages: early, mid, and
late (Caccianiga et al. 2006, Ricotta et al. 2016, 2018). A zero relative abundance means that the species was not recorded in that
stage. The age of the root is approximately 147 Myr.
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dispersal mechanisms that drive the colonization of the
glacial deposits by the first pioneer species. The increas-
ing structural uniformity of vegetation over time (Cac-
cianiga et al. 2006) will then lead to an increase in
evenness, especially in the late-successional stage.
This trend is accompanied by a taxonomic and phylo-

genetic shift from early-successional ruderal forbs, such
as Cerastium uniflorum, Oxyria digyna, or Tussilago far-
fara, to late-successional stress-tolerant graminoids,
such as Carex curvula, Carex sempervirens, or Festuca
halleri, which are among the species that contribute most
to the taxonomic differences among successional stages
in Fig. 3 (Caccianiga et al. 2006, Ricotta et al. 2018).
The species contributions to the Jaccard-type taxonomic
dissimilarity index vary significantly as a function of the
parameter q. For q = 0, the highest contributions to tax-
onomic dissimilarity are provided by those species that
are exclusive to a single successional stage, such as
Adenostyles leucophylla or Luzula lutea, whereas for
q = 2, attention is shifted towards the dominant species,
such as C. curvula, C. sempervirens, or Poa alpina
(Fig. 3). From our theory, the contribution of each spe-
cies for q > 0 is the product of its weight (proportion of
species total abundance for q = 1 or squared total abun-
dance for q = 2) and the unevenness of its abundances
among the three stages. For each node of a phylogenetic

tree, the contribution should be additionally multiplied
by its branch length.
C. sempervirens and C. curvula are the two most abun-

dant species in the late stage, but they are very rare in
the early and midstages. Thus, the unevenness for each
of the two species among the three stages is high and the
weight (proportion of species total abundance) is also
large, leading to a relatively large contribution of each
species to the taxonomic dissimilarity for q = 1 and
q = 2. Also, the ubiquitous stress-tolerant graminoid P.
alpina is the most abundant species in the early stage
and the second most abundant in the mid-stage, but is
very rare in the late stage (Caccianiga et al. 2006). Simi-
lar arguments lead to its relatively large contribution
especially for q = 2. For q = 1, several species with inter-
mediate abundances also contribute to some extent
because of the relatively high unevenness in abundances
among the three stages.
Likewise, looking at Fig. 4, we observe that for q = 0,

the highest contributions to phylogenetic dissimilarity
are mainly associated with single species (i.e., the tip
nodes of the phylogenetic tree) because most of the
descendants of internal nodes were found in all three
stages except for node N2605 (associated to the genus
Saxifraga; see Fig. 1) which was only found in the early
and midstages. This is also why for q = 0 only the
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FIG. 2. Evenness profiles as a function of order q (0 < q ≤ 2) based on the six classes of evenness measures in Table 1 (E1–E6 in
the six panels) for 45 Alpine species in three succession stages: early (red), mid (green), and late (blue).
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internal node N2605 contributes a high portion of phy-
logenetic dissimilarity.
However, when the value of q is increased, the high-

est contributions to phylogenetic dissimilarity are
increasingly provided by more internal nodes, meaning
that for higher values of q, attention is progressively
shifted from single species to species clades. This seems
to be a very interesting outcome of this class of phylo-
genetic dissimilarity measures as changing the value of
q allows a summarization of phylogenetic dissimilarity

at deeper evolutionary times. When q = 2, the species
that lead to highest unevenness and largest weights are
the two late-stage-dominant species C. sempervirens
and C. curvula along with the more ubiquitous P.
alpina, which is dominant in the early- and midsucces-
sional stages. These three graminoid species all des-
cended from node N1054 but were found in different
stages. This explains why the only dominant contribu-
tion to the phylogenetic dissimilarity of q = 2 comes
from node N1054.
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FIG. 3. The contribution of each species to the taxonomic Jaccard-type dissimilarity index. See Fig. 1 for species identities and
relative abundances. The contribution pattern for the Sørensen-type dissimilarity index (as shown in Appendix S3: Fig. S1) is nearly
identical except for the differences in magnitude.
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DISCUSSION

We have presented some basic requirements for an
evenness measure (Requirements 1a, 1b, 2, 3a, and 3b)
and developed five classes of evenness measures
(Table 1). All our measures are functions of species rich-
ness and diversity of order q > 0 and possess the required
properties. Some additional properties (Properties P1–
P4) of our measures are also derived. We have proposed
the use of evenness profiles (Fig. 2) to quantify evenness
in a single assemblage and compare them across multiple
assemblages. The Jaccard- and Sørensen-type dissimilar-
ity among assemblages can be expressed as weighted
averages of individual species’ compositional unevenness

values (Eqs. 7a–c and Appendix S1: Section S4). The
corresponding phylogenetic version is presented in
Appendix S2. The contribution of each species/node to
the Jaccard- and Sørensen-type taxonomic and phyloge-
netic dissimilarity measures can be quantified and dis-
played; see Figs. 3, 4.
Here, we discuss our requirements/properties in more

detail and compare them with some other properties
that were previously proposed by other researchers. The
first requirement listed in the Smith and Wilson (1996)
consumer’s guide to evenness indices is that an evenness
measure should be “independent” of species richness.
This concept of “independence” was interpreted differ-
ently by several authors. Smith and Wilson (1996)
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FIG. 4. The contribution of each species/node to the phylogenetic Jaccard-type phylogenetic dissimilarity index. See Fig. 1 for
species relative abundances, species/node identities and the phylogenetic tree. The contribution pattern for the Sørensen-type dissim-
ilarity index (shown in Appendix S3: Fig. S2) is nearly identical except for the differences in magnitude.
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believed that the independence could be verified by
checking whether an evenness index is invariant for mul-
tiple replicated assemblages (i.e., replication invariance).
Later, Gosselin (2006) interpreted this independence as
an assertion that the value an evenness measure can take
should not vary with species richness, and Kv�alseth
(2015) interpreted it as stating that richness S should not
appear in an evenness formula.
We have adopted the resolution proposed by Chao

and Chiu (2016) that the “independence” (or unrelated-
ness) of two measures means that for any diversity order
q ≥ 0, the range of values that one measure can take
should be a fixed interval for any value of the other mea-
sure. The existence of such a fixed range facilitates com-
parability and meaningful ordering of evenness across
different values of q and also across multiple assem-
blages. We have proved that our evenness measures are
“independent” (or unrelated) not only of species richness
but also of diversity of any order q > 0 in the following
sense: all the proposed evenness measures (Table 1)
attain a fixed maximum value of unity for a completely
even assemblage (i.e., p ¼ �p); all measures approach a
fixed minimum value of 0 for the maximally uneven
assemblage (i.e., p ¼ p0), regardless of the values of
species richness and abundance-based diversity.

Independence is not equivalent to replication invariance

Several researchers (Sheldon 1969, Hill 1973, Tuo-
misto 2012) proposed a definition of “evenness” as the
ratio of diversity and species richness; that is, qD=S, for
q > 0. Because qD is between 1 and S, Jost (2010)
pointed out that the range of this index is in the interval
[1/S, 1], revealing the range is constrained by the value
of species richness. Consequently, the index qD=S, while
replication invariant, is in fact “dependent” on species
richness. This example clearly demonstrates that “inde-
pendence” cannot be verified by replication invariance.
The Gini evenness index provides another example, as
will be discussed in the following.

Consequence of “dependence” on species richness

Here, we give a numerical example based on the mea-
sure qD=S for the special case of q = 1 to explain the
consequence of “dependence”; a similar consequence
arises for any other q > 0. Suppose that Assemblage I
represents the maximally uneven two-species assem-
blage, that is, two species with relative abundances 0.999
and 0.001; we have 1D=S ¼ 1:008=2 ¼ 0:504. Assem-
blage II has 10 species with relative abundances
[3 9 0.2874, 7 9 0.0197] (3 species with relative abun-
dances 0.2874 and 7 species with relative abundances
0.0197), which deviates to some extent from the maxi-
mally uneven 10-species assemblage. Intuitively, the two
assemblages should not be equally even. However, for
Assemblage II, we obtain almost the same evenness
value based on the formula 1D=S ¼ 5:04=10 ¼ 0:504,

suggesting an intuitively unreasonable conclusion that
the two assemblages are equally even.
The problem arises because the index 1D=S in Assem-

blage I can only take values in [0.5, 1] for any two-species
assemblage; thus 0.504 means an almost minimally even
(i.e., maximally uneven) assemblage. However, the same
index in Assemblage II take values in the range [0.1, 1];
thus the same value 0.504 indicates a moderately even
assemblage with 10 species. Therefore, a consequence of
“dependence” on richness is that the same magnitude of
evenness may quantify different degrees of equitability
among species relative abundances if species richness dif-
fers. This leads to ambiguity in interpreting the measure
1D=S to reflect evenness among assemblages.
To overcome this problem, we can normalize the mea-

sure to [0, 1] using a simple transformation:
ðqD=S �minÞ=ðmax�minÞ ¼ ðqD=S � 1=SÞ=ð1� 1=SÞ
¼ ðqD� 1Þ=ðS � 1Þ, which is our third class of evenness
measures (Table 1). Based on this normalized evenness
measure, the evenness for Assemblage I is measured as
0.008, whereas the evenness for Assemblage II is 0.449,
which reveals that Assemblage II is more even. This
ordering then conforms to our intuition and is also con-
sistent with that based on all our evenness measures
listed in Table 1.

Lorenz partial-ordering and replication invariance

Taillie (1979) was the first to propose a Lorenz partial-
ordering approach (Lorenz-ordering approach hereafter)
to rank the evenness of assemblages. Gosselin (2001,
2006) advocated the Lorenz-ordering approach as a
framework to define evenness indices. As discussed in the
Properties section, our measures preserve Lorenz ordering
only when species richness is fixed across assemblages
(Property P2). Otherwise, the two approaches may give
different orderings. In Appendix S4: Tables S1 and
Fig. S1, we give an example in which the Lorenz curve of
Assemblage I (two species) is everywhere above the curve
of Assemblage II (five species). Lorenz ordering implies
that Assemblage I is more even. However, all our mea-
sures reveal the reverse order. When species richness is not
fixed, two drastically different properties exist between the
Lorenz-ordering approach and our measures:

1. As intuitively explained in Property P4 (replication
monotonicity) and rigorously proved in Appendix S1:
Section S3, all our evenness measures always increase
for multiple replicated assemblages except in the com-
pletely even case. This is consistent with Jost (2010)
and Kv�alseth (2015); they indicated that an evenness
measure should not be replication invariant. By con-
trast, the Lorenz-ordering approach satisfies replica-
tion invariance because the Lorenz curve for any
replicated assemblages is the same as that of the origi-
nal one.

2. All our measures approach an absolute fixed mini-
mum value, regardless of the value of species richness
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(Requirement 3a). However, the minimum value a
Lorenz-compatible evenness measure can take is
necessarily dependent on species richness due to
replication invariance; see Gosselin (2001:
Fig. 2). As discussed in the preceding subsection
for the measure qD=S and in the next subsection
for the Gini index, such dependence causes inter-
pretation problems. Nevertheless, this dependence
can be eliminated through proper normalization.
Both the normalized measure ðqD� 1Þ=ðS � 1Þ, as
discussed previously, and the following normal-
ized Gini evenness index satisfy replication
monotonicity and approach an absolute minimum
value of 0.

Normalized Gini evenness index

The overall amount of unevenness in a Lorenz curve
can be measured by the Gini coefficient. Assume that
the elements of the species relative abundance vector
p ¼ ðp1; p2; . . .; pSÞ are ordered such that pð1Þ � pð2Þ
� . . .� pðSÞ; the Gini unevenness coefficient can be
expressed as ðS þ 1� 2

PS
i¼1 ipðiÞÞ=S and the corre-

sponding Gini evenness index is G ¼ ð2PS
i¼1

ipðiÞ � 1Þ=S. The Gini evenness index is replication
invariant but “dependent” on richness in the sense that it
takes values in the interval [1/S, 1]. This follows from the
fact that the Gini evenness index attains a fixed maxi-
mum value of 1 for p ¼ �p, and the minimum value is 1/S
when p ¼ p0. A similar interpretational problem as that
found for the measure qD=S also arises for the Gini
evenness index. For example, the Gini evenness index for
the previously described maximally uneven two-species
assemblage (Assemblage I with species relative abun-
dances 0.999 and 0.001) is 0.5005, suggesting a mini-
mally even assemblage, because Assemblage I can only
take values in [0.5, 1]. By contrast, the Gini evenness
index for Assemblage II = [3 9 0.2874, 7 9 0.0197] (10
species) is 0.438. This lower evenness value, however,
indicates a moderately even assemblage, because the
same index in Assemblage II take values in the range
[0.1, 1]. However, the Gini evenness index implies that
the maximally uneven Assemblage I is “more even” than
Assemblage II, which is contradictory to intuition.
Again, a simple remedy is to normalize the Gini even-

ness measure to [0, 1] using a simple transformation:
G� ¼ ðG�minÞ=ðmax�minÞ¼ ð2PS

i¼1 ipðiÞ �2Þ=ðS�1Þ,
a measure first developed by Solomon (1979). This nor-
malized evenness measure possesses all our require-
ments/properties, including replication monotonicity.
The normalized Gini evenness indices for Assemblage I
and Assemblage II are calculated, respectively, as 0.002
and 0.338, which reveals the reverse ordering; that is,
Assemblage II is more even. This ordering is also
consistent with that based on all our evenness mea-
sures. Additional discussion on some other evenness
measures and related statistical issues are provided in
Appendix S4.
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